第十八章 番外 余弦相似度
余弦相似度(Cosine Similarity)是一种衡量两个非零向量之间角度的度量方式,用于评估它们之间的相似性。它的值范围从 -1 到 1,其中 1 表示完全相同的方向(即向量完全相同),0 表示正交(没有相似性),而 -1 表示完全相反的方向。
假设我们有两个向量 A 和 B,它们的余弦相似度可以通过以下公式计算:
$ \text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} $
其中:
- $ \mathbf{A} \cdot \mathbf{B} $ 是向量 A 和 B 的点积(内积)。
- $ |\mathbf{A}| 和 和 和 |\mathbf{B}| $ 分别是向量 A 和 B 的模长(长度)。
具体来说:
- 点积(内积):$ \mathbf{A} \cdot \mathbf{B} = \sum_{i=1}^{n} A_i B_i $,其中 (n) 是向量的维度。
- 模长(长度):$ |\mathbf{A}| = \sqrt{\sum_{i=1}{n} A_i^2} $。
公式可以进一步展开为:
$ \text{similarity} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}} $
示例计算
假设我们有两个向量 A 和 B,其中:
- $ \mathbf{A} = [1, 2, 3] $
- $ \mathbf{B} = [4, 5, 6] $
我们可以按照上述公式计算它们之间的余弦相似度:
- 点积:
$ \mathbf{A} \cdot \mathbf{B} = 14 + 25 + 3*6 = 4 + 10 + 18 = 32 $ - 模长:
- $ |\mathbf{A}| = \sqrt{12 + 22 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} $
- $ |\mathbf{B}| = \sqrt{42 + 52 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77} $
- 余弦相似度:
$ \text{similarity} = \frac{32}{\sqrt{14} \sqrt{77}} = \frac{32}{\sqrt{1078}} $
我们可以使用 Python 来计算这个值:
import numpy as np# 定义两个向量
vector_a = np.array([1, 2, 3])
vector_b = np.array([4, 5, 6])# 计算点积
dot_product = np.dot(vector_a, vector_b)# 计算模长
norm_a = np.linalg.norm(vector_a)
norm_b = np.linalg.norm(vector_b)# 计算余弦相似度
cosine_similarity = dot_product / (norm_a * norm_b)print("Cosine similarity:", cosine_similarity)
相关文章:
第十八章 番外 余弦相似度
余弦相似度(Cosine Similarity)是一种衡量两个非零向量之间角度的度量方式,用于评估它们之间的相似性。它的值范围从 -1 到 1,其中 1 表示完全相同的方向(即向量完全相同),0 表示正交࿰…...
HPA和helm
HPA pod的数量进行扩缩容 针对控制器创建的pod deployment: replica: 静态:edit yaml:apply -f HPA:基于cpu的利用率来实现pod数量的自动伸缩。 Horizontal pod autoscaling yaml文件————主流——————…...
基于人工智能的智能语音助手
语音助手的自然语言处理模块是语音助手系统的关键组成部分。通过这个模块,系统能够识别用户的意图并做出相应的回应。我们可以使用NLP技术来解析文本输入,并将其转换为系统可以理解的命令或指令。在本项目中,我们将结合语音识别、自然语言处理…...

java实际开发——数据库存储金额时用什么数据类型?(MySQL、PostgreSQL)
目录 java开发时金额用的数据类型——BigDecimal MySQL存储金额数据时用的数据类型是——decimal PostgreSQL存储金额数据时用的数据类型是——decimal 或 money java开发时金额用的数据类型——BigDecimal https://blog.csdn.net/Jilit_jilit/article/details/142180903?…...

Java 设计模式-状态模式
目录 一. 概述 二. 主要角色 三. 代码示例 四. 优缺点 优点: 缺点: 五. 常见应用场景 一. 概述 状态模式是一种行为设计模式,它允许一个对象在其内部状态改变时改变它的行为。对象看起来好像修改了它的类。状态模式把所有的与一个特定…...

2024.9.13 Python与图像处理新国大EE5731课程大作业,索贝尔算子计算边缘,高斯核模糊边缘,Haar小波计算边缘
1.编写一个图像二维卷积程序。它应该能够处理任何灰度输入图像,并使用以下内核进行操作: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy import linalg import random as rm import math import cv2# import and …...
动态IP池的IP都是纯净IP吗?
在当今互联网时代,动态IP池作为一种网络资源管理策略,被广泛应用于数据抓取、市场调研、广告验证等多种场景中。动态IP池能够提供大量可轮换的IP地址,以帮助用户避免因频繁访问同一网站而被封禁IP的情况。然而,一个关键的问题是&a…...

【MySQL】查询表中重复数据、模糊查询列信息、快速copy表数据(1)
一、SQL查询重复的数据: 1、SQL格式: Select * From 数据表 Where 重复记录字段 in ( select 重复记录字段 From 数据表 Group By 重复记录字段 Having Count(重复记录字段)>1) 2、举例: 在这个patient_member_info表中,我们…...
计算机操作系统之并行性与并发性笔记
目录 在计算机操作系统中,并行性与并发性是两个既相似又有区别的重要概念 并行性: 并发性: 可以通过多任务处理和资源共享来具体说明 并发性的例子 并行性的例子 总结 在计算机操作系统中,并行性与并发性是两个既相似又有区别…...

顶级高效的ChatGPT论文润色提示词和使用技巧
在学术研究中,精确和高效地对文本进行润色和修改是一个必不可少的重要环节。随着学术论文篇幅的增长和内容的复杂度上升,找到一种能够有效整理和优化修改内容的方法变得尤为关键。本文将探讨如何利用ChatGPT作为工具,通过具体的指令和策略,来优化文本的修改过程,提高学术写…...

WebAPI (一)DOM树、DOM对象,操作元素样式(style className,classList)。表单元素属性。自定义属性。间歇函数定时器
文章目录 Web API基本认知一、 变量声明二、 DOM1. DOM 树2. DOM对象3. 获取DOM对象(1)、选择匹配的第一个元素(2)、选择匹配多个元素 三、 操作元素1. 操作元素内容2. 操作元素属性(1)、常用属性(href之类的)(2)、通过style属性操作CSS(3)、通过类名(cl…...

若依框架开发
若依环境 介绍 若依是一款快速开发平台(低代码),用于快速构建企业级后台管理系统,它提供了许多常用的功能模块和组件,包括权限管理、代码生成、工作流、消息中心等 官方地址: https://www.ruoyi.vip/ 基于Spring Boot和Spring Cloud…...

局域网windows下使用Git
windows下如何使用局域网进行git部署 准备工作第一步 ,ip设置设置远程电脑的ip设置,如果不会设置请点击[这里](https://blog.csdn.net/Black_Friend/article/details/142170705?spm1001.2014.3001.5501)设置本地电脑的ip:验证 第二步&#x…...

Redis访问工具
使用Redis存储缓存数据,如何通过Java去访问Redis? 防止后面看晕,先来张图。 1. Redis的客户端库 Redis的客户端库是Redis官方提供的,用于让Java等编程语言与Redis服务器进行通信的工具包。常见的Redis客户端库有多个,…...

vue3+ant design vue动态实现级联菜单~
1、这里使用的是ant design vue 的TreeSelect 树选择来实现的。 <a-form-item name"staffDept" label"责任部门" labelAlign"left"><a-tree-selectv-model:value"formState.staffDept"show-search//允许在下拉框中添加搜索框…...

软件可维护性因素例题
答案:C 知识点: 系统可维护性因素决定 可理解性 可测试性 可修改性 选项C可移植性错误...

git的一些操作
参考视频: git分支详解(约10分钟掌握分支80%操作),git-branch,git分支管理,git分支操作,git分支基础和操作,2023年git基础使用教程 不同的分支相当于不同的平行世界 合并分支 两个分支是我们项…...

opencv实战项目二十三:基于BEBLID描述符的特征点匹配实现表盘校正
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、特征点匹配介绍二、特征点检测三、特征描述符计算四,描述符的匹配筛选五,根据匹配结果映射图片六,整体代码:…...
数据库是全表扫描是怎么扫描法?
全表扫描是数据库服务器用来搜寻表的每一条记录的过程,直到所有符合给定条件的记录返回为止。 在执行全表扫描时,数据库会逐行扫描表中的所有记录,以找到符合查询条件的记录。这种扫描方式适用于没有为查询条件中的字段建立索引的情况。全…...

认准这10款人力资源系统,90%的企业都在用!
本文将为大家推荐十款主流的人力资源系统,为企业选型提供参考! 想象一下,企业在不断发展壮大的过程中,员工数量逐渐增多,人事管理变得越来越复杂。如果没有一个高效的人力资源系统,就如同在大海中航行却没有…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...