当前位置: 首页 > news >正文

【C++】——vector模拟实现和迭代器失效问题

文章目录

  • 模拟实现
    • vector基本成员变量
    • vector的构造与析构
    • vector迭代器
    • vector容量
    • vector元素访问
    • vector修改操作
  • vector迭代器失效问题
    • 什么是迭代器失效
      • 1.插入元素导致迭代器失效
      • 2.删除元素导致迭代器失效
      • 3.重新分配空间导致迭代器失效
    • 如何解决迭代器失效问题

模拟实现

vector基本成员变量

在这里插入图片描述

namespace sg
{template<class T>class vector{
public:typedef T* iterator;typedef const T* const_iterator;
private:iterator _start = nullptr;iterator _finish = nullptr;iterator _end_of_storage = nullptr;}
};

这里我把成员改成与迭代器相关,更方便我们接下来的使用

vector的构造与析构

//构造函数
vector(const vector<T>& v)
{reserve(v.size()); // 开辟一个空间for (auto& e : v){push_back(e);}
}
//析构函数
~vector()
{if (_start) // 如果_start不为空就析构{delete[] _start;_start = _finish = _end_of_storage = nullptr;}
}

vector迭代器

iterator begin()
{return _start;
}
iterator end()
{return _finish;
}
const_iterator begin() const
{return _start;
}
const_iterator end() const
{return _finish;
}

vector容量

bool empty()
{return _start == _finish;
}
void reserve(size_t n)
{size_t old_size = size();T* tmp = new T[n];memcpy(tmp, _start, size() * sizeof(T));delete[] _start;_start = tmp;_finish = tmp + old_size;_end_of_storage = _start + n;
}
size_t size()
{return _finish - _start;
}size_t capacity()
{return _end_of_storage - _start;
}void resize(size_t n, T val = T())
{if (n < size()){_finish = _start + n;}else{reserve(n);while (_finish < _start + n){*_finish = val;++_finish;}}
}

vector元素访问

T& operator[](size_t i)
{assert(i < size());return _start[i];
}

vector修改操作

void push_back(const T& x)
{if (_finish == _end_of_storage){reserve(capacity() == 0 ? 4 : capacity() * 2);}*_finish = x;_finish++;
}
void pop_back()
{assert(!empty());--_finish;
}
iterator insert(iterator pos, const T& x)
{assert(pos >= _start);assert(pos <= _finish);//扩容if (_finish == _end_of_storage){size_t len = pos - _start;reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + len;}iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;--end;}*pos = x;++_finish;return pos;
}
void erase(iterator pos)
{assert(pos >= _start);assert(pos < _finish);iterator it = pos + 1;while (it != end()){*(it - 1) = *it;++it;}--_finish;
}

vector迭代器失效问题

迭代器失效的本质是因为vector的内存管理机制和对动态数组的封装方式。vector的某些操作会导致其底层数组的重新分配,所以原有的迭代器会失效。

什么是迭代器失效

迭代器失效的常见情况:

  1. 插入元素:在vector末尾插入元素,除了指向最后一个元素的迭代器以外,其他迭代器依旧有效
    如果在其他位置插入,则指向该插入位置的迭代器和其之后的所有迭代器失效
  2. 删除元素:删除元素后,被删除和删除之后的所有迭代器都会失效
  3. 重新分配:当vector的大小超过当前容量时,它可能分配需要更大的空间进行存储元素,这种重新分配会导致所有迭代器、指针、引用失效

注意:vector的迭代器失效也和编译器环境有关,有关指报错和运行。在Linux下,g++对于迭代器失效的检查就没这么严格,一般迭代器失效也还能运行,不过运行结果会出错。

1.插入元素导致迭代器失效

int main()
{vector<int> v1{ 1,2,3,4,5 };auto it = v1.begin();v1.insert(v1.begin(), 99); // 在第一个位置插入元素while (it != v1.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

在这里插入图片描述
插入和删除同理,这里我已删除为例
在这里插入图片描述

2.删除元素导致迭代器失效

int main()
{vector<int> v1{ 1,2,3,4,5 };auto it = v1.begin();v1.erase(v1.begin()); // 删除第一个元素while (it != v1.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

在这里插入图片描述

3.重新分配空间导致迭代器失效

int main()
{vector<int> v1{ 1,2,3,4,5 };auto it = v1.begin();v1.resize(20, 10); // 容量不够,重新分配空间,又叫异地扩容while (it != v1.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

在这里插入图片描述
在这里插入图片描述

如何解决迭代器失效问题

string迭代器失效原因和vector异地扩容类似,需要注意。

解决办法:在使用前重新赋值

int main()
{vector<int> v1{ 1,2,3,4,5 };auto it = v1.begin();v1.resize(20, 10); // 容量不够,重新分配空间,又叫异地扩容it = v1.begin(); // 使用前重新赋值while (it != v1.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

在这里插入图片描述

相关文章:

【C++】——vector模拟实现和迭代器失效问题

文章目录 模拟实现vector基本成员变量vector的构造与析构vector迭代器vector容量vector元素访问vector修改操作 vector迭代器失效问题什么是迭代器失效1.插入元素导致迭代器失效2.删除元素导致迭代器失效3.重新分配空间导致迭代器失效 如何解决迭代器失效问题 模拟实现 vector…...

USB 3.1 标准 A 型连接器及其引脚分配

USB 3.1 标准 A 型连接器 USB 3.1 标准 A 型连接器被定义为主机连接器。它具有与 USB 2.0 标准 A 型连接器相同的配合接口&#xff0c;但增加了另外两对差分信号和一个接地引脚。 USB 3.1 标准 A 型插座可以接受 USB 3.1 标准 A 型插头或 USB 2.0 标准 A 型插头。类似地&…...

机器学习文献|基于循环细胞因子特征,通过机器学习算法预测NSCLC免疫治疗结局

今天我们一起学习一篇最近发表在Journal for immunotherapy of cancer &#xff08;IF 10.9&#xff09;上的文章&#xff0c;Machine learning for prediction of immunotherapeutic outcome in non-small-cell lung cancer based on circulating cytokine signatures[基于循环…...

Qt 实现自定义截图工具

目录 Qt 实现自定义截图工具实现效果图PrintScreen 类介绍PrintScreen 类的主要特性 逐步实现第一步&#xff1a;类定义第二步&#xff1a;初始化截图窗口第三步&#xff1a;处理鼠标事件第四步&#xff1a;计算截图区域第五步&#xff1a;捕获和保存图像 完整代码PrintScreen.…...

第15-05章:获取运行时类的完整结构

我的后端学习大纲 我的Java学习大纲 6.1.第一组方法API: 1.API列表&#xff1a;java.lang.Class 类&#xff1a; 2.代码测试&#xff1a; public class ReflectionUtils{ puvblic static void main(String[] args){}// 第一组Testpublic void api_01{//上面截图的代码......…...

【Kubernetes】K8s 的鉴权管理(二):基于属性 / 节点 / Webhook 的访问控制

K8s 的鉴权管理&#xff08;二&#xff09;&#xff1a;基于属性 / 节点 / Webhook 的访问控制 1.基于属性的访问控制&#xff08;ABAC 鉴权&#xff09;2.基于节点的访问控制&#xff08;node 鉴权&#xff09;2.1 读取操作2.2 写入操作 3.基于 Webhook 的访问控制3.1 基于 We…...

Java面试、技巧、问题、回复,资源面面观

入门 先了解一下面试流程 复习 Java 基础知识&#xff1a; 温习 Java 编程的核心概念&#xff0c;包括数据类型、变量、循环、数组和面向对象的编程原则。数据结构和算法&#xff1a; 加强您对 Java 编程中使用的基本数据结构和算法的理解。练习编码&#xff1a; 在各种平台上解…...

深入理解Elasticsearch的`_source`字段与索引优化

在Elasticsearch (ES) 中&#xff0c;_source字段是一个关键组件&#xff0c;它不仅决定了数据的存储方式&#xff0c;还影响到查询时返回的内容。在某些场景下&#xff0c;我们可以通过配置_source来优化存储和性能&#xff0c;尤其是当我们希望减少存储空间或避免返回某些字段…...

Pikachu靶场

先来点鸡汤&#xff0c;少就是多&#xff0c;慢就是快。 环境搭建 攻击机kali 192.168.146.140 靶机win7 192.168.146.161 下载zip&#xff0c;pikachu - GitCode 把下载好的pikachu-master&#xff0c;拖进win7&#xff0c;用phpstudy打开网站根目录&#xff0c;.....再用…...

TS axios封装

方式一 service/request/request.ts import axios from axios import { ElLoading } from element-plus import type { AxiosRequestConfig, AxiosInstance, AxiosResponse } from axios import type { ILoadingInstance } from element-plus/lib/el-loading/src/loading.typ…...

学会使用西门子博途Startdrive中的测量功能

工程师在驱动调试过程中&#xff0c;往往需要对驱动系统的性能进行分析及优化&#xff0c;比如说借助于调试软件中的驱动器测量功能&#xff0c;可以得到驱动系统的阶跃响应、波特图等&#xff0c;以此为依据工程师可以调整速度控制器、电流控制器的相关参数&#xff0c;使驱动…...

Spring Security认证与授权

1 Spring Security介绍 Spring Security是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架。由于它是Spring生态系统中的一员&#xff0c;因此它伴随着整个Spring生态系统不断修正、升级&#xff0c;在spring boot项目中加入springsecurity更是…...

速通GPT:Improving Language Understanding by Generative Pre-Training全文解读

文章目录 速通GPT系列几个重要概念1、微调的具体做法2、任务感知输入变换3、判别式训练模型 Abstract概括分析和观点1. 自然语言理解中的数据问题2. 生成预训练和监督微调的结合3. 任务感知输入变换4. 模型的强大性能 Introduction概括分析和观点1. 自然语言理解的挑战在于对标…...

软件质量保证例题

答案&#xff1a;D 软件质量保证 功能性 适合性 准确性 互操作性 安全保密性 依从性 可靠性 成熟性 容错性 易恢复性 易用性 易理解性 易学性 易操作性 效率 时间特性 资源利用性 维护性 易分析性 易改变性 稳定性 易测试性 可移植性 适应性 易安装性 一致性 易替换…...

动态规划算法---04.斐波那契数列模型_解码方法_C++

题目链接&#xff1a;91. 解码方法 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/decode-ways/description/ 一、题目解析 题目&#xff1a; 题目大意&#xff1a;从题目中我们可以知道&#xff0c;解码就是在字符串s中由‘1’到‘26’的字符可以转化…...

crm如何做私域运营?

流量获取的挑战日益增加&#xff0c;客户线索成本高、客户资源流失严重、转化率低&#xff0c;因此&#xff0c;私域流量管理已成为关键。 当前挑战 1、公域流量难以整合&#xff1a;外部流量分散&#xff0c;难以有效汇总和沉淀。 2、私域运营体系缺失&#xff1a;缺乏有效沟…...

基于QGIS 3.16.0 的OSM路网矢量范围裁剪实战-以湖南省为例

目录 前言 一、相关数据介绍 1、OMS路网数据 2、路网数据 3、路网图层属性 二、按省域范围进行路网裁剪 1、裁剪范围制定 2、空间裁剪 3、裁剪结果 三、总结 前言 改革开放特别是党的十八大以来&#xff0c;我国公路发展取得了举世瞩目的成就。国家高速公路网由“7 射…...

WPF 手撸插件 八 依赖注入

本文内容大量参考了&#xff1a;https://www.cnblogs.com/Chary/p/11351457.html 而且这篇文章总结的非常好。 1、注意想使用Autofac&#xff0c;Autofac是一个轻量级、‌高性能的依赖注入&#xff08;‌DI&#xff09;‌框架&#xff0c;‌主要用于.NET应用程序的组件解耦和…...

走进低代码报表开发(一):探秘报表数据源

在前文当中&#xff0c;我们对勤研低代码平台的流程设计功能进行了介绍。接下来&#xff0c;让我们一同深入了解在企业日常运营中另一个极为常见的报表功能。在当今数字化时代&#xff0c;高效的报表生成对于企业的决策至关重要。勤研低代码开发平台能够以卓越的性能和便捷的操…...

代理服务器及其原理

代理服务器的代理可以分为正向代理和反向代理&#xff0c;本篇将讲解这两种代理方式的原理&#xff0c;以及对应的功能特点和应用场景。最后还对比和 NAT 和代理服务器的区别。 目录 正向代理 工作原理 功能特点 应用场景 反向代理 基本原理 应用场景 NAT和代理服务器…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构&#xff1a;由肠系膜上静脉和脾静脉汇合构成&#xff0c;是肝脏血液供应的主要来源。淤血后果&#xff1a;门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血&#xff0c;引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...

Python的__call__ 方法

在 Python 中&#xff0c;__call__ 是一个特殊的魔术方法&#xff08;magic method&#xff09;&#xff0c;它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时&#xff08;例如 obj()&#xff09;&#xff0c;Python 会自动调用该对象的 __call__ 方法…...

__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.

这个警告表明您在使用Vue的esm-bundler构建版本时&#xff0c;未明确定义编译时特性标志。以下是详细解释和解决方案&#xff1a; ‌问题原因‌&#xff1a; 该标志是Vue 3.4引入的编译时特性标志&#xff0c;用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...

ABAP设计模式之---“Tell, Don’t Ask原则”

“Tell, Don’t Ask”是一种重要的面向对象编程设计原则&#xff0c;它强调的是对象之间如何有效地交流和协作。 1. 什么是 Tell, Don’t Ask 原则&#xff1f; 这个原则的核心思想是&#xff1a; “告诉一个对象该做什么&#xff0c;而不是询问一个对象的状态再对它作出决策。…...