代码随想录算法训练营第五十九天 | dijkstra(堆优化版)精讲
目录
dijkstra(堆优化版)精讲
思路
堆优化细节
方法一: 最小堆优化
dijkstra(堆优化版)精讲
- 题目链接:卡码网:47. 参加科学大会
文章讲解:代码随想录
小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。
小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。
小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。
【输入描述】
第一行包含两个正整数,第一个正整数 N 表示一共有 N 个公共汽车站,第二个正整数 M 表示有 M 条公路。
接下来为 M 行,每行包括三个整数,S、E 和 V,代表了从 S 车站可以单向直达 E 车站,并且需要花费 V 单位的时间。
【输出描述】
输出一个整数,代表小明从起点到终点所花费的最小时间。
输入示例
7 9 1 2 1 1 3 4 2 3 2 2 4 5 3 4 2 4 5 3 2 6 4 5 7 4 6 7 9输出示例:12
【提示信息】
能够到达的情况:
如下图所示,起始车站为 1 号车站,终点车站为 7 号车站,绿色路线为最短的路线,路线总长度为 12,则输出 12。
不能到达的情况:
如下图所示,当从起始车站不能到达终点车站时,则输出 -1。
数据范围:
1 <= N <= 500; 1 <= M <= 5000
思路
堆优化细节
其实思路依然是 dijkstra 三部曲:
- 第一步,选源点到哪个节点近且该节点未被访问过
- 第二步,该最近节点被标记访问过
- 第三步,更新非访问节点到源点的距离(即更新minDist数组)
只不过之前是 通过遍历节点来遍历边,通过两层for循环来寻找距离源点最近节点。 这次我们直接遍历边,且通过堆来对边进行排序,达到直接选择距离源点最近节点。
先来看一下针对这三部曲,如果用 堆来优化。
那么三部曲中的第一步(选源点到哪个节点近且该节点未被访问过),我们如何选?
我们要选择距离源点近的节点(即:该边的权值最小),所以 我们需要一个 小顶堆 来帮我们对边的权值排序,每次从小顶堆堆顶 取边就是权值最小的边。
(pq中中为什么要存 源点到该节点的权值,因为 这个小顶堆需要按照权值来排序)
有了小顶堆自动对边的权值排序,那我们只需要直接从 堆里取堆顶元素(小顶堆中,最小的权值在上面),就可以取到离源点最近的节点了 (未访问过的节点,不会加到堆里进行排序)
所以三部曲中的第一步,我们不用 for循环去遍历,直接取堆顶元素:
# 1. 第一步,选源点到哪个节点近且该节点未被访问过 (通过优先级队列来实现)
# 节点, 源点到该节点的距离
cur_dict,cur_node = heapq.heappop(pq)
第二步(该最近节点被标记访问过) 这个就是将 节点做访问标记,和 朴素dijkstra 一样 ,代码如下:
# 2. 第二步,该最近节点被标记访问过
visited[cur_node] = True
(cur.first 是指取 pair<int, int> 里的第一个int,即节点编号 )
第三步(更新非访问节点到源点的距离),这里的思路 也是 和朴素dijkstra一样的。
但很多录友对这里是最懵的,主要是因为两点:
- 没有理解透彻 dijkstra 的思路
- 没有理解 邻接表的表达方式
我们来回顾一下 朴素dijkstra 在这一步的代码和思路(如果没看过我讲解的朴素版dijkstra,这里会看不懂)
# 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
for j in range(1,n+1):if not visited[j] and graph[cur][j] != float('inf') and graph[cur][j] + minDist[cur] < minDist[j]:minDist[j] = minDist[cur] + graph[cur][j]
其中 for循环是用来做什么的? 是为了 找到 节点cur 链接指向了哪些节点,因为使用邻接矩阵的表达方式 所以把所有节点遍历一遍。
而在邻接表中,我们可以以相对高效的方式知道一个节点链接指向哪些节点。
所以在邻接表中,我们要获取 节点cur 链接指向哪些节点,就是遍历 graph[cur节点编号] 这个链表。
接下来就是更新 非访问节点到源点的距离,代码实现和 朴素dijkstra 是一样的,代码如下:
for edge in edges[cur_node]:if not visited[edge.to] and cur_dict + edge.val < minDist[edge.to]:minDist[edge.to] = cur_dict + edge.valheapq.heappush(pq,(minDist[edge.to],edge.to))
方法一: 最小堆优化
import heapq
import sys
class Edge:def __init__(self,to,val) -> None:self.to = to self.val = valdef dijkstra(edges,n,start,end):visited = [False] * (n+1)minDist = [float('inf')] * (n+1)minDist[start] = 0pq = []heapq.heappush(pq,(0,start))while pq:cur_dict,cur_node = heapq.heappop(pq)if visited[cur_node]:continuevisited[cur_node] = Truefor edge in edges[cur_node]:if not visited[edge.to] and cur_dict + edge.val < minDist[edge.to]:minDist[edge.to] = cur_dict + edge.valheapq.heappush(pq,(minDist[edge.to],edge.to))return -1 if minDist[end] == float('inf') else minDist[end]
if __name__=="__main__":input = sys.stdin.readdata = input().split()# n个车站,m条公路n = int(data[0])m = int(data[1])edges = [[] for i in range(n+1)]index = 2for i in range(m):start = int(data[index])to = int(data[index+1])val = int(data[index+2])edges[start].append(Edge(to,val))index += 3res = dijkstra(edges,n,start=1,end=n)print(res)
相关文章:
代码随想录算法训练营第五十九天 | dijkstra(堆优化版)精讲
目录 dijkstra(堆优化版)精讲 思路 堆优化细节 方法一: 最小堆优化 dijkstra(堆优化版)精讲 题目链接:卡码网:47. 参加科学大会 文章讲解:代码随想录 小明是一位科学家&#x…...
go语言后端开发学习(七)——如何在gin框架中集成限流中间件
一.什么是限流 限流又称为流量控制(流控),通常是指限制到达系统的并发请求数。 我们生活中也会经常遇到限流的场景,比如:某景区限制每日进入景区的游客数量为8万人;沙河地铁站早高峰通过站外排队逐一放行的…...
SpringBoot2:web开发常用功能实现及原理解析-整合EasyExcel实现Excel导入导出功能
1、工程包结构 主要是这5个Java类 2、导入EasyExcel包 这里同时贴出其他相关springboot的基础包 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><depend…...
CTFShow-信息搜集
Web1: 题目描述:开发注释未及时删除 。 打开题目后提示web1:where is flag? ctrlu读取源码。 Web2: 题目描述:js前台拦截 无效操作 打开题目后显示:无法查看源代码 右键无法用,…...
Facebook的虚拟现实功能简介:社交网络的新前沿
在科技飞速发展的今天,虚拟现实(VR)已经从科幻小说中的梦想变成了触手可及的现实。作为全球领先的社交平台,Facebook(现已更名为Meta)正大力推动虚拟现实技术的发展,以重新定义用户的社交体验。…...
Redis embstr 编码
embstr 编码 是 Redis 中一种优化存储小型字符串的编码方式。它是 Redis 内部存储字符串的多种方式之一,特别适用于存储长度不超过 44 字节的小字符串。...
【Elasticsearch系列二】安装 Kibana
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
中国电子学会202403青少年软件编程(Python)等级考试试卷(三级)真题与解析
202403Python 三级真题 一、选择题 1.在 Python 中,hex(2023)的功能是?( ) A.将十进制数 2023 转化为十六进制数 B.将十进制数 2023 转化为八进制数 C.将十六进制数 2023 转化为十进制数 D.将八进制数 2023 转化为十进制数 2.下列表达式的值与其他三个选项不相…...
k8s 资源管理
文章目录 ResourceQuota什么是资源配额定义一个ResourceQuotaResourceQuota的使用 LimitRangeLimitRange的用途示例1:配置默认的requests和limits示例2:配置requests和limits的范围 QoS什么是服务质量保证示例1:实现QoS为Guaranteed的Pod示例…...
演示:基于WPF的自绘的中国地铁轨道控件
一、目的:演示一个基于WPF的自绘的中国地铁轨道控件 二、效果演示 北京地铁 成都地铁 上海地铁 深圳地铁 南京地铁 长春地铁 哈尔滨地铁 武汉地铁 厦门地铁 香港地铁 三、功能 支持平移、缩放等操作 鼠标悬停显示线路信息和站点信息 按表格显示,按纸张…...
设计模式(Design Patterns)
设计模式(Design Patterns)是软件开发人员在软件设计过程中面临的一般性问题的解决方案。这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结出来的。设计模式的目的是为了提高代码的可重用性、可维护性、可读性、可靠性以及灵活性。设…...
C++:opencv生成结构元素用于膨胀腐蚀等cv::getStructuringElement
cv::getStructuringElement 是 OpenCV 库中用于生成结构元素的函数。结构元素在形态学操作中(如膨胀、腐蚀、开运算、闭运算等)扮演着关键角色。这个函数可以创建不同形状和尺寸的结构元素,以适应不同的图像处理需求。 函数原型 cv::Mat cv…...
最大余额法,解决百分比计算相加不等于100%(扇形/饼图百分比使用的此算法)
在开发项目的过程中有时候需要进行计算百分比,例如计算饼状图百分比。有时候在计算的过程中常规四舍五入计算会发生所有计算的值相加不等于100%的情况 这是 get_percent_value 函数的 JavaScript 版本: /*** 最大余额法,解决百分比计算相加不…...
哈希表简单介绍
概念 在顺序结构以及平衡树中,元素关键字与他们存储的位置并没有直接的映射关系,从而会影响查找关键字的效率,顺序结构中查找关键字的时间复杂度为O(N),平衡树查找关键字的时间复杂度为O(log2^…...
kafka 之 本地部署单机版
安装JDK 查看你选择的版本需要安装哪一个版本的jdk 网址 下载 JDK下载 注:如果网页不允许下载,使用wget命令下载即可,下载之后安装。 建议使用rpm安装,之后使用 update-alternatives --config java 控制当前环境使用Java的版…...
开发一款通过蓝牙连接控制水电表的微信小程序
增强软硬件交互 为了更好的解决师生生活中的实际问题,开发蓝牙小程序加强了和校区硬件的交互。 比如通过蓝牙连接控制水电表,减少实体卡片的使用。添加人脸活体检测功能,提高本人认证效率,减少师生等待时间。 蓝牙水电控展示 蓝…...
力扣14.最长公共前缀
思路:将字符串数组中第一个字符串用作参考; 8.将他的长度作为范围,因为超范围了之后就不会再有公共前缀了 9.将字符串数组的长度也作为范围,意思是便利字符串数组中的字符串 11.开始第一层循环,依次遍历第一个字符串的…...
你也喜欢“钓鱼“吗?
免责声明:本文仅做分享! 目录 什么是网络钓鱼 流程 攻击手法 0-隐藏自己 1-office宏 创建xxx.dotm 创建xxx.docx 2-RLO 自解压 3-快捷方式lnk 4-邮件伪造 Swaks Gophish 5-网站克隆 setoolkit nginx反向代理 前端页面克隆 6-wifi钓鱼 7-其他 防御 溯源 反…...
druid jdbc 执行 sql 输出 开销耗时
druid 执行sql输出 参考链接配置_LogFilter alibaba/druid Wiki GitHub 看不太懂的往这里瞅瞅。 1. 别名映射 这个地方 给我们提供了 5 种 logfilter : log4j、log4j2、slf4j、commonlogging和commonLogging 每一种实际上都代表一个日志框架 或 日志门面。 -Ddruid.fil…...
C++如何处理内存碎片问题
目录 一.前言二.什么是内存碎片三.如何处理内存碎片 一.前言 这篇文章简单讨论一下C如何处理内存碎片问题。 二.什么是内存碎片 所谓内存碎片就是系统中存在的不能供进程使用的小块内存,主要包括外部碎片以及内部碎片。 外部碎片:内存分配和回收的过…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

