当前位置: 首页 > news >正文

opencv之Canny边缘检测

文章目录

  • 前言
  • 1.应用高斯滤波去除图像噪声
  • 2.计算梯度
  • 3.非极大值抑制
  • 4.应用双阈值确定边缘
  • 5.Canny函数及使用


前言

Canny边缘检测是一种流行的边缘检测算法,用于检测图像中的边缘。它通过一系列步骤将图像中的像素边缘突出显示出来,主要分为以下几个步骤:

  1. 灰度化:将图像转换为灰度图,减少计算复杂度。
  2. 高斯滤波:使用高斯滤波器对图像进行平滑处理,以减少噪声对边缘检测的影响。
  3. 计算梯度:通过计算图像的梯度(通常使用Sobel算子)来检测边缘的方向和强度。
  4. 非极大值抑制:对梯度幅值进行非极大值抑制,以保留边缘并减少非边缘的杂点。
  5. 双阈值处理:通过设置高阈值和低阈值,将强边缘和弱边缘分离出来。
  6. 边缘连接:根据强边缘将弱边缘连接起来,形成最终的边缘检测结果。

1.应用高斯滤波去除图像噪声

由于图像边缘非常容易受到噪声的干扰,因此为了避免检测到错误的边缘信息,通常需要对图像进行滤波以去除噪声。滤波的目的是平滑一些纹理较弱的非边缘区域,以便得到更准确的边缘。在实际处理过程中,通常采用高斯滤波去除图像中的噪声。图1演示了使用高斯滤波器T对原始图像O中像素值为226的像素点进行滤波,得到该点在滤波结果图像D内的值的过程。

图1

在滤波过程中,我们通过滤波器对像素点周围的像素计算加权平均值,获取最终滤波结果。对于高斯滤波器T,越临近中心的点,权值越大。在图1中,对图像O中像素值为226的像素点,使用滤波器T进行滤波的计算过程及结果为:
在这里插入图片描述

当然,高斯滤波器(高斯核)并不是固定的,例如它还可以是:

在这里插入图片描述

滤波器的大小也是可变的,高斯核的大小对于边缘检测的效果具有很重要的作用。滤波器的核越大,边缘信息对于噪声的敏感度就越低。不过,核越大,边缘检测的定位错误也会随之增加。通常来说,一个5×5的核能够满足大多数的情况。

2.计算梯度

在上一章中,我们介绍了如何计算图像梯度的幅度。在这里,我们关注梯度的方向,梯度的方向与边缘的方向是垂直的。

边缘检测算子返回水平方向的 G x G_x Gx和垂直方向的 G y G_y Gy。梯度的幅度 G G G和方向 θ \theta θ(用角度值表示)为:
在这里插入图片描述
式中, a t a n 2 ( ⋅ ) atan2(·) atan2()表示具有两个参数的arctan函数。梯度的方向总是与边缘垂直的,通常就近取值为水平(左、右)、垂直(上、下)、对角线(右上、左上、左下、右下)等8个不同的方向。因此,在计算梯度时,我们会得到梯度的幅度和角度(代表梯度的方向)两个值。图2展示了梯度的表示法。其中,每一个梯度包含幅度和角度两个不同的值。为了方便观察,这里使用了可视化表示方法。例如,左上角顶点的值2↑实际上表示的是一个二元数对(2, 90),表示梯度的幅度为2,角度为90°。

图2

3.非极大值抑制

在获得了梯度的幅度和方向后,遍历图像中的像素点,去除所有非边缘的点。在具体实现时,逐一遍历像素点,判断当前像素点是否是周围像素点中具有相同梯度方向的最大值,并根据判断结果决定是否抑制该点。通过以上描述可知,该步骤是边缘细化的过程。针对每一个像素点:

  • 如果该点是正/负梯度方向上的局部最大值,则保留该点。
  • 如果不是,则抑制该点(归零)。

在图3中,A、B、C三点具有相同的方向(梯度方向垂直于边缘)。判断这三个点是否为各自的局部最大值:如果是,则保留该点;否则,抑制该点(归零)。
在这里插入图片描述

图3

经过比较判断可知,A点具有最大的局部值,所以保留A点(称为边缘),其余两点(B和C)被抑制(归零)。

在图4中,黑色背景的点都是向上方向梯度(水平边缘)的局部最大值。因此,这些点会被保留;其余点被抑制(处理为0)。这意味着,这些黑色背景的点最终会被处理为边缘点,而其他点都被处理为非边缘点。
在这里插入图片描述

图4

正/负梯度方向上是指相反方向的梯度方向。例如,在图5中,黑色背景的像素点都是垂直方向梯度(向上、向下)方向上(即水平边缘)的局部最大值。这些点最终会被处理为边缘点。
在这里插入图片描述

图5

经过上述处理后,对于同一个方向的若干个边缘点,基本上仅保留了一个,因此实现了边缘细化的目的。

4.应用双阈值确定边缘

完成上述步骤后,图像内的强边缘已经在当前获取的边缘图像内。但是,一些虚边缘可能也在边缘图像内。这些虚边缘可能是真实图像产生的,也可能是由于噪声所产生的。对于后者,必须将其剔除。

设置两个阈值,其中一个为高阈值maxVal,另一个为低阈值minVal。根据当前边缘像素的梯度值(指的是梯度幅度,下同)与这两个阈值之间的关系,判断边缘的属性。具体步骤为:

  1. 如果当前边缘像素的梯度值大于或等于maxVal,则将当前边缘像素标记为强边缘。
  2. 如果当前边缘像素的梯度值介于maxVal与minVal之间,则将当前边缘像素标记为虚边缘(需要保留)。
  3. 如果当前边缘像素的梯度值小于或等于minVal,则抑制当前边缘像素。在上述过程中,我们得到了虚边缘,需要对其做进一步处理。一般通过判断虚边缘与强边缘是否连接,来确定虚边缘到底属于哪种情况。通常情况下,如果一个虚边缘:
    • 与强边缘连接,则将该边缘处理为边缘。
    • 与强边缘无连接,则该边缘为弱边缘,将其抑制。

在图6中,左图显示的是三个边缘信息,右图是对边缘信息进行分类的示意图,具体划分如下:
在这里插入图片描述

图6
  • A点的梯度值值大于maxVal,因此A是强边缘。
  • B和C点的梯度值介于maxVal和minVal之间,因此B、C是虚边缘。
  • D点的梯度值小于minVal,因此D被抑制(抛弃)。

图7显示了对图6中的虚边缘B和C的处理结果。其中:
在这里插入图片描述

图7
  • B点的梯度值介于maxVal和minVal之间,是虚边缘,但该点与强边缘不相连,故将其抛弃。
  • C点的梯度值介于maxVal和minVal之间,是虚边缘,但该点与强边缘A相连,故将其保留。

注意,高阈值maxVal和低阈值minVal不是固定的,需要针对不同的图像进行定义。

5.Canny函数及使用

OpenCV提供了函数cv2.Canny()来实现Canny边缘检测,其语法形式如下:

edges = cv.Canny( image, threshold1, threshold2[, apertureSize[, L2gradient]])

式中:

  • edges为计算得到的边缘图像。
  • image为8位输入图像。
  • threshold1表示处理过程中的第一个阈值。
  • threshold2表示处理过程中的第二个阈值。
  • apertureSize表示Sobel算子的孔径大小。
  • L2gradient为计算图像梯度幅度(gradient magnitude)的标识。其默认值为False。如果为True,则使用更精确的L2范数进行计算(即两个方向的导数的平方和再开方),否则使用L1范数(直接将两个方向导数的绝对值相加)。
    在这里插入图片描述

代码

使用函数cv2.Canny()获取图像的边缘,并尝试使用不同大小的threshold1和threshold2,观察获取到的边缘有何不同。

import cv2
o=cv2.imread("lena.bmp", cv2.IMREAD_GRAYSCALE)
r1=cv2.Canny(o,128,200)
r2=cv2.Canny(o,32,128)
cv2.imshow("original", o)
cv2.imshow("result1", r1)
cv2.imshow("result2", r2)
cv2.waitKey()
cv2.destroyAllWindows()

运行程序,结果如图9所示。其中:

  • original图是原始图像。
  • result1图是参数threshold1为128、threshold2为200时的边缘检测结果。
  • result2图是参数threshold1为32、threshold2为128时的边缘检测结果。
    在这里插入图片描述

相关文章:

opencv之Canny边缘检测

文章目录 前言1.应用高斯滤波去除图像噪声2.计算梯度3.非极大值抑制4.应用双阈值确定边缘5.Canny函数及使用 前言 Canny边缘检测是一种流行的边缘检测算法,用于检测图像中的边缘。它通过一系列步骤将图像中的像素边缘突出显示出来,主要分为以下几个步骤…...

springBoot 集成https

springBoot 集成https 1、springBoot默认的证书格式 pring Boot 需要 .p12 或 .jks 格式的证书。如果你只有 .pem 和 .key 文件,可以使用 openssl 工具将它们转换成 .p12 文件 2、转换.p12 我的证书文件如下,需要转换 2.1 下载openssl https://slpr…...

数据库连接池与Druid【后端 16】

数据库连接池与Druid 在现代软件开发中,数据库连接池作为一种关键的技术手段,被广泛用于提升数据库访问的效率和稳定性。本文将深入探讨数据库连接池的概念、常见实现,并重点介绍我国阿里集团开源的数据库连接池——Druid,以及如何…...

C#使用Access数据库使用总结

话说这Access数据库确实是有点年代了,前面在深圳的一家放射医疗公司,数据库用的Access,后面在我的建议下,换成了SQLite。用SQLite多舒服,不用装Runtime,还可以用EF。Access得装Runtime,也用不了…...

使用Dataherald组件进行数据分析:从安装到查询的完整指南

使用Dataherald组件进行数据分析:从安装到查询的完整指南 引言 在当今数据驱动的世界中,能够快速、准确地从数据中获取洞察变得越来越重要。Dataherald是一个强大的工具,它可以帮助开发者和数据分析师更轻松地进行数据查询和分析。本文将详…...

sqlx1.3.4版本的问题

sqlx1.3.4版本存在问题,在调用sqlx的Select方法时,如果传入的dest是一个slice且slice不为空,查询结果将会追加在这个slice已有的元素后面。这位用户认为这个行为是“a little surprising”的,且与json 反序列化的表现不一致&#…...

Rust 编译器使用的 C++ 编译器吗?

Rust编译器并不直接使用C编译器,但它们之间可以存在交互,尤其是在Rust与C进行混合编程时。以下是关于Rust编译器和C编译器之间关系的详细解释: 1. Rust编译器的选择 Rust是一种现代化的系统级编程语言,它需要一个可靠的编译器来…...

Python计算机视觉 第10章-OpenCV

Python计算机视觉 第10章-OpenCV OpenCV 是一个C 库,用于(实时)处理计算视觉问题。实时处理计算机视觉的 C 库,最初由英特尔公司开发,现由 Willow Garage 维护。OpenCV 是在 BSD 许可下发布的开源库,这意味…...

多层感知机 (Multilayer Perceptron, MLP)

多层感知机 (Multilayer Perceptron, MLP) 通俗易懂算法 多层感知机(Multilayer Perceptron,MLP)是一种前馈人工神经网络。它的主要特点是由多层神经元(或节点)组成,包括至少一个隐藏层。MLP 是监督学习的…...

reg和wire的区别 HDL语言

文章目录 数据类型根本区别什么时候要定义wire小结 数据类型 HDL语言有三种数据类型:寄存器数据类型(reg)、线网数据类型(wire)、参数数据类型(parameter)。 根本区别 reg: 寄存器…...

前置声明和头文件之间的关系 问题

出现这些问题的原因是 ORB_SLAM3::MultiGraph 被前置声明了,但在使用的时候,编译器并没有看到 MultiGraph 类的完整定义。前置声明只能用于指针和引用,但如果要访问其成员函数或变量,必须包含完整的类定义。 解决方案步骤&#x…...

Linux02

1.相对路径和绝对路径 cd用于切换目录,对于路径可以用相对路径和绝对路径 例如:cd /home/user/public和cd public效果一样,都是将目录切换到HOME文件夹下的public文件夹 2.特殊路径符 .表示当前目录 ..表示上级目录 ~表示HOME目录 3.m…...

df 命令:显示磁盘空间使用情况

一、df 命令简介 ​df​命令用于显示文件系统的磁盘空间利用情况,包括文件系统的总空间、已用空间、可用空间以及挂载点信息。通过df​命令,用户可以快速了解系统中各个文件系统的空间使用情况。 ‍ 二、df 命令参数 df [选项] [目录/驱动器]选项&am…...

深入解析Go语言的容器包

在Go语言中,container标准包为开发者提供了三个非常有用的数据结构:堆(heap)、链表(list)和环(ring)。这些数据结构的实现分别位于container/heap、container/list和container/ring中…...

STM32 + W5500 实现HTTPS !

两点: 1. 让我们先站在操作系统之上的网络协议栈再之上来思考…… 2. 我们先简单粗暴地理解为:http + (加密)= https 先弄一个简单的HTTP网络客户端,连接服务器并读取默认页面。该应用程序可能如下所示: #include <sys/types.h> #include <sys/socket.h> …...

使用DuckDuckGo搜索API进行高效信息检索:Python实践指南

使用DuckDuckGo搜索API进行高效信息检索&#xff1a;Python实践指南 引言 在当今信息爆炸的时代&#xff0c;快速准确地获取所需信息变得越来越重要。DuckDuckGo作为一个注重隐私的搜索引擎&#xff0c;提供了强大的搜索API&#xff0c;让开发者能够轻松地将搜索功能集成到自…...

UE4_后期处理_后期处理材质四—场景物体描边

一、效果如下图&#xff1a; 二、分析&#xff1a; 回顾复习&#xff1a;在后期处理材质三中&#xff0c;我们通过计算开启自定义深度通道物体的像素点上下左右4个像素SceneTextureCustomDepth深度之和来判断物体的外部&#xff08;包含物体的边&#xff09;和内部&#xff0c…...

华为OD机试 - 推荐多样性(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…...

梧桐数据库(WuTongDB):CBO(Cost-Based Optimizer)基于代价的优化器技术简介

CBO&#xff08;基于代价的优化器&#xff0c;Cost-Based Optimizer&#xff09;是现代数据库系统中最广泛使用的查询优化器之一。它通过计算执行查询时可能消耗的资源&#xff08;如CPU、内存、I/O&#xff09;来选择最优的执行计划&#xff0c;以提高查询性能。 1. CBO 的工…...

深入探索Go语言中的函数:匿名函数、指针参数与函数返回

1. Go语言中的函数 函数是任何编程语言中的核心元素&#xff0c;它们帮助我们将大型程序分解为更小的、易于管理的部分。在Go语言中&#xff0c;函数是通过 func 关键字定义的。理想的函数应当是独立的&#xff0c;完成单一任务。如果你发现某个函数正在执行多个任务&#xff…...

Android12_13左上角状态栏数字时间显示右移动

文章目录 问题场景解决问题 一、基础资料二、代码追踪三、解决方案布局的角度解决更改paddingStart 的默认值设置marginLeft 值 硬编码的角度解决 问题场景 1&#xff09;早期一般屏幕都是方形的&#xff0c;但是曲面屏&#xff0c;比如&#xff1a;好多车机Android产品、魔镜…...

望繁信科技携流程智能解决方案亮相CNDS 2024新能源产业数智峰会

9月13日&#xff0c;CNDS 2024中国新能源产业数智峰会在北京圆满落幕。本次峰会以“走向数字新能源”为主题&#xff0c;汇聚了来自新能源领域的顶尖领袖、专家学者及知名企业代表&#xff0c;共同探讨数字化技术在新能源行业中的创新应用和发展趋势。上海望繁信科技有限公司&a…...

nginx负载均衡(轮询与权重)

文章目录 1. nginx的介绍2. nginx使用场景3. nginx在windows的下载与安装4. nginx的简单使用5. nginx进行轮询测试6. nginx进行权重测试7. 总结 1. nginx的介绍 Nginx&#xff08;engine x&#xff09;是一个高性能的HTTP和反向代理web服务器&#xff0c;同时也是一个开源的、…...

【计算机网络】网络通信中的端口号

文章目录 一、引入端口号二、端口号的作用三、端口号的确定 在TCP/IP协议中&#xff0c;传输层有两个重要的协议&#xff1a;TCP&#xff08;传输控制协议&#xff09;和UDP&#xff08;用户数据报协议&#xff09;。TCP用于提供可靠的数据传输&#xff0c;而UDP则适合用于广播…...

Python 解析 JSON 数据

1、有如下 JSON 数据&#xff0c;存放在 data.json 文件&#xff1a; [{"id":1, "name": "小王", "gender": "male", "score": 96.8}, {"id":2, "name": "小婷", "gender&qu…...

利用LlamaIndex构建ARG本地知识库

文章目录 1. 环境准备2. 启用诊断日志3. 配置本地模型4. 配置本地向量模型5. LlamaIndex全局配置6. 创建 PGVectorStore7. 从数据库加载数据8. 文本分割器: SpacyTextSplitter9. 配置管道10. 创建向量存储索引11 .指定响应模式&#xff0c;以及启用流式响应 在现代的人工智能应…...

PCM的缺点

PCM的主要缺点包括需要较大的‌数据传输带宽和‌存储空间&#xff0c;导致无法实现‌高压缩比&#xff0c;相对较低的‌数据压缩效率。‌‌ PCM&#xff08;脉冲编码调制&#xff09;作为一种无损编码技术&#xff0c;虽然能够保留原始信号的完整性&#xff0c;适用于需要高保…...

【C语言】(指针系列四)回调函数+qsort函数

一、回调函数 回调函数就是通过函数指针调用的函数 如果你把函数的指针作为参数传递给另外一个函数&#xff0c;当这个指针被用来调用其所指向的函数时&#xff0c;被调用的函数就是回调函数。回调函数并不是一个单一的函数实现的&#xff0c;而是在某种情况下&#xff0c;编…...

全面理解tensor编程中矩阵的行和列

经常会在编程中遇到理解矩阵行和列的事情。 1、要明确无论这个张量有多少维度&#xff0c;它的矩阵乘法都只能作用于最后两个维度。 例如&#xff1a; import torcha torch.rand([64, 32, 3, 4]) b torch.rand([64, 32, 3, 4])c torch.matmul(a, b.transpose(2, 3)) # 交…...

【Kubernetes】常见面试题汇总(十)

目录 29.简述 Kubernetes 自动扩容机制&#xff1f; 30.简述 Kubernetes Service 类型&#xff1f; 31.简述 Kubernetes Service 分发后端的策略&#xff1f; 32.简述 Kubernetes Headless Service &#xff1f; 29.简述 Kubernetes 自动扩容机制&#xff1f; &#xff08;…...