聚类_K均值
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
1.数据预处理
#创建基于高斯分布的样本点, x是点的坐标,y是所属聚类值
x, y = make_blobs(n_samples=100, centers=6, random_state=100, cluster_std=0.6)
# 设置图形尺寸,单位英寸
plt.figure(figsize=(6,6))
plt.scatter(x[:,0], x[:,1],c = y)
plt.show
<function matplotlib.pyplot.show(close=None, block=None)>
2.模型实现
from scipy.spatial.distance import cdistclass KMeansModel():#参数k聚类数, 最大迭代次数,初始质心def __init__(self, k_cluster=6, max_iteration=100, centroids=[]):self.k_cluster = k_clusterself.max_iteration = max_iterationself.centroids = np.array(centroids, dtype = np.float32)def fit(self, points):# 随机选取初始质心点if(self.centroids.shape==(0,)):self.centroids = points[np.random.randint(0, points.shape[0], self.k_cluster), :]for i in range(self.max_iteration):#计算所有测试点和所有质心的距离,返回100*6的矩阵distances = cdist(points, self.centroids)#选取行方向最小的书作为测试点的质心c_index = np.argmin(distances, axis=1)if(i == 0):print("c shape", c_index.shape,c_index[0])#计算每类数据的均值作为新的质心for i in range(self.k_cluster):if i in c_index:self.centroids[i] = np.mean(points[c_index == i], axis=0)def predict(self, points):distances = cdist(points, self.centroids)#选取距离最近的质心作为分类c_index = np.argmin(distances, axis=1)return c_index
3.测试
def plot_kmeans(x, y, centroids, subplot):plt.subplot(subplot)plt.scatter(x[:,0], x[:,1], c=y)plt.scatter(centroids[:,0], centroids[:,1],s=100,c='r')# 训练
kmean_model = KMeansModel(centroids=np.array([[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]]))
plt.figure(figsize=(18,8))
plot_kmeans(x, y, kmean_model.centroids, 121)kmean_model.fit(x)
print(kmean_model.centroids)
plot_kmeans(x, y, kmean_model.centroids, 122)#预测
x_new = np.array([[10,7],[0,0]])
y_predict = kmean_model.predict(x_new)
print("predict y ", y_predict)
plt.scatter(x_new[:,0],x_new[:,1],s=100, c= "black")
c shape (100,) 0
[[ 4.343336 -5.112518 ][-1.6609049 6.7436223][-8.57988 -3.3460388][ 2.7469435 6.05025 ][ 2.490612 7.7450833][ 4.1287684 6.6914167]]
predict y [5 3]<matplotlib.collections.PathCollection at 0x1576e5a9850>
相关文章:

聚类_K均值
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs1.数据预处理 #创建基于高斯分布的样本点, x是点的坐标,y是所属聚类值 x, y make_blobs(n_samples100, centers6, random_state100, cluster_std0.6) # 设置图形尺寸…...

Mac电脑剪切板在哪里找 苹果电脑剪切板打开教程【详解】
Windows 和 Mac 电脑在使用方式上存在一些差异,许多习惯了 Windows 系统的用户初次接触 Mac 时可能会对某些操作感到困惑。比如,很多人会问:Mac 上的剪贴板在哪里?如果你也有这样的疑问,不妨看看下面这篇关于如何在 Ma…...
Python编程 - 三器一包
目录 前言 一、迭代器 (一)基本概念 (二)迭代器和可迭代对象 (三)创建迭代器 (四)内置迭代器函数 (五)优点和局限性 二、生成器 (一&…...

InternVL 多模态模型部署微调实践
友情链接 该文档参考InternVL垂直领域场景微调实践而写成,感谢社区同学法律人的文档。 写在前面(什么是InternVL) InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它…...
Ruby Dir 类和方法
Ruby Dir 类和方法 Ruby 中的 Dir 类提供了用于处理目录的各种方法。这些方法允许您列出目录内容、更改当前工作目录、创建和删除目录等。本文将详细介绍 Dir 类的常用方法,并通过示例展示如何使用它们。 目录 Dir 类的简介常用方法 Dir.chdirDir.childrenDir.de…...

C++STL~~deque
文章目录 deque的概念deque的使用deque的练习总结 deque的概念 deque(双端队列):是一种序列容器、是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1)ÿ…...
SpringCloud的学习,Consul服务注册与发现、分布式配置,以及 服务调用和负载均衡
介绍 Consul 是一套开源的分布式服务发现和配置管理系统,由 HashiCorp 公司用 Go 语言开发。 提供了微服务系统中的服务治理、配置中心、控制总线等功能。这些功能中的每一个都可以根据需要单独使用,也可以一起使用以构建全方位的服务网格,…...

闯关leetcode——26. Remove Duplicates from Sorted Array
大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/remove-duplicates-from-sorted-array/description/ 内容 Given an integer array nums sorted in non-decreasing order, remove the duplicates in-place such that each unique element appear…...

基于A2C与超启发式的航天器星载自主任务规划算法-笔记
1. Actor-Critic 模块 主要文件:AC.py, PolicyNet.py, ValueNet.py作用:该模块实现了 A2C(Advantage Actor-Critic)强化学习算法。其中,ActorCritic 类是核心,它同时管理策略网络(Actor&#x…...

[机器学习]决策树
1 决策树简介 2 信息熵 3 ID3决策树 3.1 决策树构建流程 3.2 决策树案例 4 C4.5决策树 5 CART决策树(分类&回归) 6 泰坦尼克号生存预测案例 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import …...

CentOS7更换阿里云yum更新源
目前CentOS内置的更新安装源经常报错无法更新,或者速度不够理想,这个时候更换国内的镜像源就是一个不错的选择。 备份内置更新源 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 下载阿里云repo源(需要系统…...

算法参数对拥塞控制的影响
来看看参数对公平收敛的影响。仅假象一下就知道应该是个加权公平,但事实如何,还是要具体看一下。 首先看 aimd,标准的 reno 算法是每 round 之后 cwnd 加 1,但如果有些流加 1,有些流加 2,会如何࿱…...
Go websocket
Go 中的 gorilla/websocket 是一个常用且高效的 WebSocket 实现库,可以帮助你轻松地在 Web 应用中实现实时通信。学习 gorilla/websocket 的基本用法包括建立 WebSocket 连接、发送和接收消息、处理错误、以及在实际场景中的使用。以下是关于 gorilla/websocket 的学…...
C# 委托与事件 观察者模式
委托与事件是一种观察者模式。 什么是委托与事件 在c#中,委托类似于代理,也跟其它语言的函数指针、回调函数等相似,但委托是类型安全和可靠的。声明自定义委托时,加上delegate关键字,委托定义类似于接口。 事件是特殊…...
K8S - 用service account 登陆kubectl
刚安装好k8s时 我就可以用kubectl 在master server里管理k8s的资源。 这时我们是感觉不到 k8s的用户和权限管理存在的, 但是其实用户的配置都在kubeclt 的配置文件中 /etc/kubernetes/admin.conf 中 我们可以用下命令来查看当前正在用的帐号 rootk8s-master:~/.d…...
Redis 持久化机制详解
引言 Redis 是一款基于内存的高性能键值存储系统,为了在数据丢失时能快速恢复,Redis 提供了多种持久化机制。这些持久化机制可以将内存中的数据存储到磁盘上,确保即使系统重启或宕机后也能恢复数据。Redis 支持两种主要的持久化方式…...

小阿轩yx-案例:Zabbix监控kubernetes云原生环境
小阿轩yx-案例:Zabbix监控kubernetes云原生环境 前言 传统监控的本质 就是收集、分析和使用信息来观察一段时间内监控对象的运行进度,并且进行相应的决策管理的过程,监控侧重于观察特定指标。 随着云原生时代的到来 我们对监控的功能提出…...
量化交易的个人见解
程序化交易在国内兴起有些年数了,个人以为,程序化交易与量化投资的关系,在于两者侧重点有差别。程序化交易侧重于下单的动作是机器自动执行的,量化投资则侧重于投资分析的过程是通过一个量化模型来实现的,所以量化投资…...

Java集合(一)
目录 Java集合(一) 集合介绍 单列集合分类 Collection接口 创建Collection实现类对象 常用方法 迭代器 基本使用 迭代器的执行过程 迭代器底层原理 集合中的并发修改异常及原因分析 List接口 ArrayList类 介绍 常用方法 遍历集合 Array…...
车载软件架构 --- SOA设计与应用(下)
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...