【逐行注释】自适应Q和R的AUKF(自适应无迹卡尔曼滤波),附下载链接

文章目录
- 自适应Q的KF
- 逐行注释的说明
- 运行结果
- 部分代码
- 各模块解释
自适应Q的KF
自适应无迹卡尔曼滤波(Adaptive Unscented Kalman Filter,AUKF)是一种用于状态估计的滤波算法。它是基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的改进算法。
自适应 Q 和 R Q和R Q和R的无迹卡尔曼滤波在无迹卡尔曼滤波的基础上,引入了自适应的思想。通过动态地、同时调整状态转移协方差、观测噪声协方差的大小,从而提高系统的估计精度。
自适应无迹卡尔曼滤波适用于非线性和非高斯的系统状态估计问题,可以广泛应用于机器人导航、目标跟踪、航天器导航等领域。它通过动态地调整无迹点的数量和分布,能够更好地适应系统的动态特性,提高估计精度,同时具有较低的计算复杂度。
逐行注释的说明
每一行都标有中文注释:

是我自己一个字一个字打的,如果有错别字等问题,欢迎指正。
运行结果
-
三轴的估计值、真值、滤波前的值对比:

-
三轴的误差值对比:

-
三轴的误差累积密度函数绘图:

上图放大可得到如下细节:

部分代码
% 自适应调节Q和R的UKF与传统UKF效果对比
% author:Evand
% 作者联系方式:微信matlabfilter(除前期达成一致外,付费咨询)
% 2024-5-5/Ver1
% 2024-9-9/Ver2/添加逐行注释clear;clc;close all; %清空工作区、命令行,关闭小窗口
rng(0); %固定随机种子
%% 滤波模型初始化
t = 1:1:1000;% 定义时间序列Q = 1*diag([1,1,1]);w=sqrt(Q)*randn(size(Q,1),length(t));% 设置过程噪声协方差矩阵和过程噪声
R = 1*diag([1,1,1]);v=sqrt(R)*randn(size(R,1),length(t));% 设置观测噪声协方差矩阵和观测噪声
P0 = 1*eye(3);% 初始状态估计协方差矩阵
X=zeros(3,length(t));% 初始化状态向量
Z=zeros(3,length(t)); %定义观测值形式
Z(:,1)=[X(1,1)^2/20;X(2,1);X(3,1)]+v(:,1); %观测量
residue_tag = 0; %自适应标签
%% 运动模型
% 初始化未滤波的状态向量
fprintf('完整代码下载链接:https://gf.bilibili.com/item/detail/1105566012');
X_ = zeros(3,length(t)); %给未滤波的值分配空间
各模块解释
程序共有下列几个模块:

其中包括如下部分:
- 初始化:初始化参数
- 运动模型:通过迭代的方式,计算系统在所有时刻下的真值和未滤波的值
- UKF:经典的无迹卡尔曼滤波
- AUKF:经过自适应的UKF
- 绘图:绘制曲线图和CDF图像
- 总误差输出:fprintf的输出示例
【现在输出的是平均值,如下:】

将代码里面的mean换成max即为最大值,换成std即为计算标准差
相关文章:
【逐行注释】自适应Q和R的AUKF(自适应无迹卡尔曼滤波),附下载链接
文章目录 自适应Q的KF逐行注释的说明运行结果部分代码各模块解释 自适应Q的KF 自适应无迹卡尔曼滤波(Adaptive Unscented Kalman Filter,AUKF)是一种用于状态估计的滤波算法。它是基于无迹卡尔曼滤波(Unscented Kalman Filter&am…...
OpenCV高阶操作
在图像处理与计算机视觉领域,OpenCV(Open Source Computer Vision Library)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、 1.图片的上下,采样 下采样(Downsampling) 下采样通常用于减小图像的…...
Vue中的防抖和节流是什么,它们的作用是什么?
在Vue.js中,防抖(debounce)和节流(throttle)是两种常用的性能优化技术,主要用于处理高频事件,如窗口滚动、窗口大小调整、键盘输入等。 **防抖(Debounce)**:…...
C++的类与对象中(主讲默认成员函数)
目录 1.类的默认成员函数 2.构造函数 1.全缺省构造函数 2.第7点中的对自定义类型的成员变量构造(调用编译器自动生成的默认构造函数) 3.析构函数 4.拷贝构造函数 5.运算符重载 1.概念 2.赋值运算符重载 6.const成员函数 1.类的默认成员函数 默…...
C#学习系列之Gmap地图界面上的实时绘制问题
C#学习系列之Gmap地图界面上的实时绘制问题 前言总结 前言 在地图控件上增加绘制不规则图形,在之前的经验来看, System.InvalidOperationException:“无法使用 DependencyObject,它属于其父 Freezable 之外的其他线程。” 其实就是ui线程中…...
Spring Boot中实现定时任务的主要方式
文章目录 在Spring Boot中实现定时任务,主要有以下几种方式:1. 使用Scheduled注解2. 使用Quartz调度器使用Quartz调度器(更好的做法)3. 使用TaskExecutor和ScheduledExecutorService4.总结 在Spring Boot中实现定时任务,主要有以下几种方式&a…...
C#使用HttpWebRequest下载文件
public static bool HttpDownloadFile(string downloadUrl, string localPath, log4net.ILog log) { bool bFlagDownloadFile false; //log.Debug("HttpDownloadFile--准备以HTTP的方式下载文件,url:[" downloadUrl &…...
Linux: virtual: qemu-kvm: top cpu usage的组成是否包含guest的使用?
文章目录 问题试验mpstat问题 最近看一个问题,看到一个虚拟机分配的cpu是:3-4,27-28 Cpus_allowed: 0000,18000018 Cpus_allowed_list: 3-4,27-28 使用top看qemu-kvm进程的cpu usage是:13.3%: [root@qrms6-host01 14278]# top -p 14278 top - 01:19:35 up 4 days...
【03】深度学习——神经网络原理 | 多层感知机 | 前向传播和反向传播 | 多层感知机代码实现 | 回归问题、分类问题 | 多分类问题代码实现
深度学习 1.神经网络原理1.1神经元模型1.2神经网络结构1.3隐藏层1.3.1激活函数层1.4输出层1.4.1softmax层1.5损失函数1.6反向传播2.多层感知机2.1线性网络的局限性2.2引入非线性2.3多层感知机(Multi-Layer Perceptron,MLP)2.4激活函数(Activation Function)2.4.1Sigmoid函…...
MySQL行锁的实践
在MySQL中,根据加锁的粒度,可以将数据库的锁细分为表锁、行锁、页锁。其中,表锁(Table Lock)是一种粗粒度的锁,它锁定整个表,阻止其他事务访问表中的任何行;行锁(Row Lock)是一种细粒度的锁,它锁…...
iOS 18 將在 9 月 16 日正式上線
現在有了正式的上線日期了。一如往常的,它會在 iPhone 16 系列正式推出前的 9 月 16 日先行上線。 iOS 18 最受矚目的無疑是它的 Apple Intelligence 功能,不過並非所有的 iPhone 機種都能享用,而是只有去年的 iPhone 15 Pro 和 Pro Max 才能…...
css选择器有几种?选择器的优先级是怎样的?
CSS选择器的主要分类 元素选择器(Type Selectors):选择HTML文档中的特定类型的元素。 示例:p { color: red; } 类选择器(Class Selectors):选择具有指定类名的元素。 示例:.myClass …...
果蔬识别系统性能优化之路(四)
目录 前情提要剩下问题 问题排查解决方案下一步 前情提要 果蔬识别系统性能优化之路(三) 剩下问题 同步数据库数据并初始化ivf依然要8,9秒 问题排查 通过断点加时间打印,发生其实初始化ivf的时间很快,慢的是数据在网络间的传…...
kafka之protobuf
Protobuf 的 .proto 文件是一种描述消息结构的定义文件,使用这种文件可以定义数据结构(消息),然后生成对应语言的类或代码用于序列化和反序列化数据。生成 .proto 文件涉及到编写 .proto 文件定义,然后通过 protoc 编译…...
BARTBERT
BART和BERT都是基于Transformer架构的预训练语言模型。 模型架构: BERT (Bidirectional Encoder Representations from Transformers) 主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本࿰…...
C++ 11新特性(1)
文章目录 C11新特性之auto和decltype知识点autoauto推导规则什么时候使用auto? decltypedecltype推导规则 auto和decltype的配合使用 C11新特性之左值引用、右值引用、移动语义、完美转发左值、右值纯右值、将亡值纯右值将亡值左值引用、右值引用 移动语义深拷贝、浅…...
彻底理解浅拷贝和深拷贝
目录 浅拷贝实现 深拷贝实现自己手写 浅拷贝 浅拷贝是指创建一个新对象,这个对象具有原对象属性的精确副本 基本数据类型(如字符串、数字等),在浅拷贝过程中它们是通过值传递的,而不是引用传递,修改值并不…...
Spring4-IoC2-基于注解管理bean
目录 开启组件扫描 使用注解定义bean Autowired注入 场景一:属性注入 场景二:set注入 场景三:构造方法注入 场景四:形参注入 场景五:只有一个构造函数,无注解 场景六:Autowired和Quali…...
AI基础 L22 Uncertainty over Time I 时间的不确定性
Time and Uncertainty 1 Time and Uncertainty States and Observations • discrete-time models: we view the world as a series of snapshots or time slices • the time interval ∆ between slices, we assume to be the same for every interval • Xt: denotes the se…...
中小型企业网络构建
1 什么是 VLAN? VLAN,指的是虚拟局域网,是一种 2 层技术。可以在交换机上实现广播域的隔离。从而可以减小 数据广播风暴对交换网络的影响,降低了网络管理难度,同时可以实现网络规模的灵活扩展。 2 Trunk 链路与 Acces…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
