模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)
模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)
文章目录
- 模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)
- 硬间隔(Hard-Margin)
- 软间隔(Soft-Margin)
- 核kernel
- 对偶问题
- 硬间隔优化问题的对偶转变
- 考点
- 软间隔优化问题的对偶转变
开始之前先推荐一个个人感觉把SVM讲的特别好的课程视频(尤其是转对偶问题那一部分),浙大胡浩基老师手写板书讲的,真的草履虫都能看懂!
点一下 嗖~就过去
硬间隔与软间隔区别如下:
硬间隔
完全分类准确,只在数据是线性可分离的时候才有效。其损失函数不存在,损失值为0。但它对异常值非常敏感,无法很好的泛化。
软间隔
要避免这些问题,最好使用更灵活的模型。目标是尽可能在保持最大间隔宽度和限制间隔违例之间找到良好的平衡,这就是软间隔分类。
所以软间隔允许一定量的样本分类错误;优化函数包括两个部分,一部分是点到平面的间隔距离,一部分是误分类的损失个数;C是惩罚系数,误分类个数在优化函数中的权重值;权重值越大,误分类的损失惩罚的越厉害。
硬间隔(Hard-Margin)
我们想找到一个超平面让其线性可分,数学表述如下:
a式子与b式子合并可得到下面的统一表示。
现在我们想让在这个分界线(面)附近的点(即支持向量)离它尽量远一点。由点到直线距离公式来使得Margin最大。
然后我们想办法将最大化Margin转化为下面这个优化问题:
怎么转化的呢?首先我们有两个事实条件:
之后:
此时,对于非支持向量那就相当于∣wTx0+b∣>1\lvert w^Tx_0+b \rvert >1∣wTx0+b∣>1
把y写进去来代替绝对值符号的作用就可以得到新的限制条件y(wTx0+b)≥1y(w^Tx_0+b) \geq 1y(wTx0+b)≥1
最后我们为了后续求导方便,我们可以在目标函数处多加一个12\frac{1}{2}21,如下:
这样就变成了一个凸优化的问题,即要么无解、要么只有一个极值。因此局部极值就是最值。
软间隔(Soft-Margin)
SVM对训练集里面的每个样本(xi,yi)(x_i,y_i)(xi,yi)引入了一个松弛变量ξi≥0ξ_i≥0ξi≥0,使函数间隔加上松弛变量大于等于1,也就是说条件变量改为如下:
yi(w∙xi+b)≥1−ξiyi(w∙xi+b)≥1−ξiyi(w∙xi+b)≥1−ξi
加入松弛变量ξiξ_iξi后,损失函数就需要改写为:
min12∣∣wi∣∣2+C∑i=1nξimin\frac12||w_i||^2+C\sum_{i=1}^nξ_imin21∣∣wi∣∣2+Ci=1∑nξi
s.t.yi(wTxi+b)≥1−ξi(i=1,2,...m)s.t. \quad y_i(w^Tx_i+b)≥1−ξ_i(i=1,2,...m)s.t.yi(wTxi+b)≥1−ξi(i=1,2,...m)
ξi≥0(i=1,2,...m)ξ_i≥0(i=1,2,...m)ξi≥0(i=1,2,...m)
这里,C>0为惩罚参数,可以理解为我们一般回归和分类问题正则化时候的参数。C越大,对误分类的惩罚越大,C越小,对误分类的惩罚越小。
也就是说,我们希望12∣∣wi∣∣2\frac12||w_i||^221∣∣wi∣∣2尽量小,误分类的点尽可能的少。C是协调两者关系的正则化惩罚系数。在实际应用中,需要调参来选择。
核kernel
对于在低维线性不可分的数据,在映射到了高维以后,就变成线性可分的了。例如:
左边是在二维空间的投影,我们没办法找到一条直线将两个类别区分开。但是如果我们将二维空间映射到三维空间的话,我们就可以找到一个超平面在三维中线性可分。
就像是三体中狄奥伦娜能进入四维空间后轻易的取人脑子一样。
维度越高线性可分就越容易。但是映射成的高维维度是爆炸性增长的,这个计算量实在是太大了,而且如果遇到无穷维的情况,就根本无从计算了。这就要用到我们的核函数了。
核函数的价值在于它虽然也是将特征进行从低维到高维的转换,但核函数好在它在低维上进行计算,而将实质上的分类效果(利用了内积)表现在了高维上,这样避免了直接在高维空间中的复杂计算,真正解决了SVM线性不可分的问题。
线性核函数
线性核函数(Linear Kernel)其实就是內积,如下:
K(x,y)=x∙yK(x,y)=x∙yK(x,y)=x∙y
多项式核函数
多项式核函数(Polynomial Kernel)是线性不可分SVM常用的核函数之一,公式如下:
K(x,y)=(γx∙y+r)dK(x,y)=(γx∙y+r)^dK(x,y)=(γx∙y+r)d
高斯核函数
高斯核函数(Gaussian Kernel),在SVM中也称为径向基核函数(Radial Basis Function,RBF),它是非线性分类SVM最主流的核函数。libsvm默认的核函数就是它。公式如下:
K(x,y)=e−∣∣x−y∣∣22σ2K(x,y)=e^{-\frac{||x-y||^2}{2\sigma ^2}}K(x,y)=e−2σ2∣∣x−y∣∣2
对偶问题
这部分建议看视频部分的讲解,讲的真的超级棒!
这里我们采用的是拉格朗日乘子将其转化成对偶问题,思路如下:
硬间隔优化问题的对偶转变
按照上述思路,首先我们将限制条件转换成a(x)≤0a(x) \leq 0a(x)≤0的形式:
之后我们构建拉格朗日常数:
因为是求最值,所以我们求导进行回代:
考点
这是我们这学期的期末考试题,老师提前透露的。也是类似上面的推导,只不过要简单一点再。
就是如果目标函数不是wTxi+bw^Tx_i + bwTxi+b而是wTxiw^Tx_iwTxi,请进行对偶问题的转换。其实是变简单了,不用对b进行求导回代了。解法如下:
可恶啊,背面画着图透过来了。算了,凑合看吧,其实结果是一样的。
软间隔优化问题的对偶转变
相关文章:

模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)
模式识别 —— 第六章 支持向量机(SVM)与核(Kernel) 文章目录模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)硬间隔(Hard-Margin)软间隔(Soft…...

总结 synchronized
目录synchronized的特性1. 互斥2. 刷新内存3. 可重入synchronized的使用1. 直接修饰普通方法2. 修饰静态方法3. 修饰代码块synchronized的锁机制基本特点关键锁策略 : 锁升级synchronized的特性 1. 互斥 synchronized 会起到互斥效果, 某个线程执行到某个对象的 synchronized…...

360周鸿祎又“开炮”:GPT 6-8就将产生自主意识!我们来测算一下对错
数据智能产业创新服务媒体——聚焦数智 改变商业近日,360的周鸿祎放言“GPT6到GPT8人工智能将会产生意识,变成新的物种。未来,人工智能大语言模型有可能实现自我进化,自动更新系统和自我升级,或者指数级进化能力&am…...

python——飞机大战小游戏
目录 1、导入模块 2、窗口操作 3、事件操作 4、长按事件 5、添加游戏背景 6、添加英雄飞机 7、获取飞机的图片矩形 8、基本游戏窗口 9、添加游戏窗口图片 10、英雄飞机登场 11、英雄飞机装备子弹并发射 1、enemy_plane 2、game_main 3、game_map 4、game_score …...

数组(完全二叉树)向下建堆法与堆排序O(N*logN)
TIPS AdjustUp & AdjustDown向上调整AdjustUp与向下调整AdjustDown的参数是一个数组(完全二叉树)需要进行调整操作的数值的下标/一个数组(完全二叉树)堆元素个数需要调整操作的数值的下标。实际上就是对完全二叉树当中的某一点…...

Lua require 函数使用
从 Lua 的用户文档中我们知道 require("modName") 函数是用来加载模块的,而如果这个modName已经用require 加载过的,再调用require时,将直接返回模块的值。因为函数首先查找 package.loaded 表, 检测 modName 是否被加载…...

【面试】如何定位线上问题?
这个面试题我在两年社招的时候遇到过,前几天面试也遇到了。我觉得我每一次都答得中规中矩,今天来梳理复盘下,下次又被问到的时候希望可以答得更好。 下一次我应该会按照这个思路去答: 1、如果线上出现了问题,我们更多…...

字节二面,原来我对自动化测试的理解太浅了
如果你入职一家新的公司,领导让你开展自动化测试,作为一个新人,你肯定会手忙脚乱,你会如何落地自动化测试呢? 01 什么是自动化 有很多人做了很长时间的自动化但却连自动化的概念都不清楚,这样的人也是很悲…...

Android11.0 应用升级成功后立即断电重启,版本恢复
问题:客户反馈内置的应用升级成功后立刻断电重启,应用的版本被恢复。 使用adb命令升级客户应用,查看版本显示已更新,/data/system目录下packages.xml和packages.xml中应用版本信息均已更新 C:\Users\dell>adb shell dumpsys …...

关于python常用软件用法:Pycharm 常用功能
人生苦短,我用python 一.Pycharm的基本使用 1.在Pycharm下为你的Python项目配置Python解释器 (1).Setting>Project Interpreter>源码资料电子书:点击此处跳转文末名片获取 二.在Pycharm下创建Python文件、Python模块 1.File>New&g…...

SOLIDWORKS你不知道的小技巧
◉ SOLIDWORKS圆弧长度标注点智能标注,再选中该圆弧,然后分别点圆弧的两个端点,点击左键可以标注圆弧长度。◉ SOLIDWORKS强力裁剪剪裁实体中的强劲剪裁,除了可以裁剪实体外,还可以任意延伸实体。◉ SOLIDWORKS转折线转…...

有了HTTP,为啥还要用RPC
既然有 HTTP 请求,为什么还要用 RPC 调用? 一直以来都没有深究过RPC和HTTP的区别,不都是写一个服务然后在客户端调用么? HTTP和RPC最本质的区别,就是 RPC 主要是基于 TCP/IP 协议的,而 HTTP 服务主要是基…...

[leetcode] 动态规划
背包 先啃懂 背包九讲 01背包,即物品有限。 for 物品for 容量(倒序)P1048 [NOIP2005 普及组] 采药 [ 原题 | 题解 ] P1049 [NOIP2001 普及组] 装箱问题 [ 原题 | 题解 ] P1507 NASA的食物计划 [ 原题 | 题解 ] P1510 精卫填海 [ 原题 | 题…...

科大奥瑞物理实验——热电偶特性及其应用研究
实验名称:热电偶特性及其应用研究 1. 实验目的: 掌握电位差计的工作原理和结构特点;了解温差电偶测温的原理和方法;学会电位差计的使用及注意事项。 2. 实验器材: 电位差计 标准电池 光电检流计 稳压电源 温差电偶…...

Eclips快捷键大全(超详细)
Eclips快捷键大全(超详细)前言一、常用快捷键二、编辑快捷键三、导航快捷键四、运行和调试快捷键五、重构快捷键六、代码生成快捷键七、项目导航快捷键八、帮助快捷键九、搜索快捷键十、标记快捷键十一、版本控制快捷键十二、其它快捷键前言 本博主将用C…...

整懵了,蚂蚁金服4面成功拿下测开offer,涨薪10k,突然觉得跳槽也不是那么难
蚂蚁的面试挺独特的,每轮面试都没有HR约时间,一般是晚上8点左右面试官来一个电话,问是否能面试,能的话开始面,不能就约一个其他时间。 全程4面,前四面技术面,电话面试,最后一面是HR面…...

C++内存分布malloc-free-new-delete的区别和联系
目录 一、内存分布 1.1内存分布图: 1.2 为什么要将bss和data区分开呢? 1.3 堆和栈有什么区别 二、malloc、free;new、delete 2.1 new和delete是如何实现的,new与malloc的异同处 2.2既然有了malloc/free,C为什么还…...

【华为OD机试 2023最新 】 最多颜色的车辆(C++ 100%)
文章目录 题目描述输入描述输出描述用例题目解析C++题目描述 在一个狭小的路口,每秒只能通过一辆车,假设车辆的颜色只有 3 种,找出 N 秒内经过的最多颜色的车辆数量。 三种颜色编号为0 ,1 ,2 输入描述 第一行输入的是通过的车辆颜色信息 [0,1,1,2] 代表4 秒钟通过的车…...

Linux安全加固
一、重要文件 /etc/passwd #记录本地用户的属性信息,如UID、GID /etc/shadow #存放用户的口令信息 只有系统管理员能查看 /etc/pam.d/system-auth #账户安全配置文件 /etc/login.defs #修改登录的配置文件 /etc/profile …...

Java基础学习(6)
Java基础学习一 字符串1.1 API 与 API文档1.1.1 如何使用帮助文档查找想要导用的方法1.2 String 概述1.3 创建String对象的两种方式第一种第二种1.4 Java常用字符串方法1.4.1 比较1.4.2 字符串通过索引取出1.4.3 取出字符串中的单个字符1.4.4 替换出字符串当中的字符1.4.5 取出…...

【LeetCode】链表练习 9 道题
第一题:移除链表元素 题目描述: 给你一个链表的头节点head和一个整数val,请你删除链表中所有满足Node.val val的节点,并返回新的头节点 。 列表中的节点数目在范围 [0, 10^4] 内1 < Node.val < 500 < val < 50 /…...

轴承远程监控系统解决方案
一、项目背景 随着现代机械设备朝着高集成、高精密度、系统化、自动化的方向发展,在工业生产中一旦机器发生故障,即使局部失灵,都可能导致设备工作失效,甚至造成整个自动化车间停产,从而给工业生产带来巨大的损失。轴承…...

阿里云轻量服务器Workbench root远程连接和一键连接的区别
阿里云轻量应用服务器远程连接支持Workbench root用户连接和Workbench一键连接,Workbench root需要输入root密码,一键连接不需要输入密码,但是也无法获得root权限,阿里云百科来详细说下阿里云轻量应用服务器远程连接说明ÿ…...

带你用纯C实现一个内存池(图文结合)
为什么要用内存池 为什么要用内存池?首先,在7 * 24h的服务器中如果不使用内存池,而使用malloc和free,那么就非常容易产生内存碎片,早晚都会申请内存失败;并且在比较复杂的代码或者继承的屎山中,…...

ChatGPT使用案例之图像生成
ChatGPT使用案例之图像生成 这里一节我们介绍一下ChatGPT的图像生成,这里我们使用代码来完成,也就是通过API 来完成,因为ChatGPT 本身是不能生成图片的,言外之意我们图片生成是ChatGPT通过其他方式生成的 Images API提供了三种与…...

蚁群算法优化旅行问题
%%%%%%%%%%%%蚁群算法解决 TSP 问题%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%% clear all; %清除所有变量 close all; %清图 clc; %清屏 m 50; %蚂蚁个数 Alpha 1; %信息素重要程度参数 Beta 5; %启发式因子重要程度参数 Rho 0.1; %信息素蒸发系数 G 20…...

树数据结构
什么是树数据结构? 树数据结构是一种层次结构,用于以易于导航和搜索的方式表示和组织数据。它是由边连接的节点集合,节点之间具有层次关系。树的最顶端的节点称为根,它下面的节点称为子节点。每个节点可以有多个子节点,…...

Spring Boot整合Redis并提供多种实际场景的应用
Spring Boot整合Redis并提供多种实际场景的应用1. 整合Redis2. 场景应用2.1 缓存2.2 分布式锁2.3 计数器2.4 发布/订阅3. 总结Spring Boot是一个快速构建基于Spring框架的应用程序的工具,它提供了大量的自动化配置选项,可以轻松地集成各种不同的技术。Re…...

VR全景图片,助力VR全景制作,720全景效果图
VR全景图片是指通过全景相机或多相机组合拍摄全景画面,并进行拼接处理生成全景图像的过程。VR全景图片的应用范围广泛,包括旅游和景区、房地产、汽车、艺术和文化、电影和娱乐等领域。本文将详细介绍VR全景图片的类型、应用场景、市场前景和发展趋势。 一…...

Kali Linux20款重要软件
Kali Linux 是一个流行的网络安全测试平台,它包含了大量的工具和应用程序,以下是其中20款最常用的软件和工具: Metasploit:Metasploit 是一个广泛使用的漏洞评估工具,可以帮助安全专业人员测试系统中的漏洞。Aircrack…...