嵌入式通信原理—SPI总线通信原理与应用
文章目录
- SPI 简介
- 基本原理
- 工作模式
- 特点
- SPI寻址方式
- 1. 片选(Chip Select, CS)
- 2. 多从设备通信
- 3. 菊花链(Daisy-Chain)模式
- 4. 地址寄存器(应用层)
- SPI通信过程
- 时钟信号生成(SCLK)
- 数据传输(MOSI/MISO)
- 数据采样与移位
- 通信时序图
- 极性和相位
- 1. 时钟极性(CPOL)
- 2. 时钟相位(CPHA)
- SPI 的 4 种工作模式
- 如何选择 CPOL 和 CPHA
SPI 简介
SPI(Serial Peripheral Interface)是一种同步串行通信协议,用于短距离的设备之间数据传输。它常用于微控制器与外部设备(如传感器、闪存、显示器等)的通信。SPI 具有以下主要特点:
基本原理
SPI 是主从模式的通信协议,通常包括一个主设备(Master)和一个或多个从设备(Slave)。主设备控制通信的时序,从设备根据主设备的指令进行响应。
SPI 使用以下四条主要信号线:
- MOSI(Master Out Slave In): 主设备发送数据到从设备的线路。
- MISO(Master In Slave Out): 从设备发送数据到主设备的线路。
- SCLK(Serial Clock): 主设备生成的时钟信号,用于同步数据传输。
- CS(Chip Select): 用于选择特定从设备进行通信,通常为低电平激活。
工作模式
SPI 通过时钟信号的不同相位和极性组合形成 4 种工作模式(Mode 0、1、2、3)。这 4 种模式根据 SCLK 的极性(CPOL)和相位(CPHA)决定数据的采样和发送时刻。
特点
- 全双工同步通信: SPI 同时进行数据发送和接收,主设备和从设备可以同时发送和接收数据。
- 速度快: 由于是硬件控制的同步通信,SPI 的传输速度较高,通常比 I²C 等其他协议更快。
- 多从设备: 一个主设备可以控制多个从设备,通过单独的CS 线选择不同的从设备。
- 简单协议: SPI 协议没有复杂的仲裁或地址机制,相对容易实现。
SPI寻址方式
在 SPI 通信中,寻址方式主要是通过片选(Chip Select, CS)线来实现的。与 I²C 等协议不同,SPI 没有内置的寻址机制,具体是通过以下方式选择和管理从设备的:
1. 片选(Chip Select, CS)
SPI 使用片选线(也称为从选择线,SS/CS)来选择与哪个从设备进行通信,主设备需要向对应从设备的CS线上发送使能信号。每个从设备通常都有自己独立的 CS 引脚。当主设备需要与某个从设备通信时,它会将对应从设备的 CS 线拉低(即置为低电平,active low,高电平也可以,根据从机而定),表示选择该从设备进行通信。其他未被选中的从设备保持 CS 线高电平,不参与通信。
2. 多从设备通信
如果在一个 SPI 总线上有多个从设备,主设备需要为每个从设备提供单独的 CS 线。典型的 SPI 多从设备通信过程如下:
- 主设备通过拉低某个从设备的 CS 线来选择该从设备。
- 其他未选中的从设备的 CS 线保持高电平,因此它们不会响应 SPI 通信信号。
- 选中设备通过 MOSI 线接收数据,通过 MISO 线向主设备发送数据。
- 当通信结束后,主设备将该从设备的 CS 线拉高,停止与该设备的通信。
例如,若有 3 个从设备,主设备可能需要 3 根 CS 线分别控制每个从设备,标记为 CS1、CS2、CS3。当主设备要与从设备 2 通信时,会拉低 CS2,进行通信,而 CS1 和 CS3 保持高电平。
3. 菊花链(Daisy-Chain)模式
在某些特殊场景下,多个从设备可以通过 菊花链 连接在一个 SPI 总线上。菊花链模式下,从设备之间依次连接,数据从一个从设备流向下一个从设备。这种模式可以通过减少主设备上的 CS 线数量来节省引脚,但通信方式较为复杂。
在菊花链模式下,主设备通过串行时钟(SCLK)发送数据,数据依次经过每个从设备。主设备发送的数据经过所有从设备后,最后一个从设备将数据回传给主设备。此模式通常用于某些特定类型的设备,如 LED 驱动器或移位寄存器。
4. 地址寄存器(应用层)
虽然 SPI 协议本身没有设备地址机制,但可以通过应用层协议来实现类似的寻址功能。主设备发送的第一字节或前几位可以定义为设备的虚拟地址,只有匹配该地址的从设备会响应。在这种方式下,SPI 寻址逻辑需要通过硬件或软件协议来设计和实现。
SPI通信过程
时钟信号生成(SCLK)
主设备生成的时钟信号 (SCLK) 用于同步数据的传输。数据在时钟的上升沿或下降沿进行采样或发送(取决于设置的 CPOL 和 CPHA 模式)。
数据传输(MOSI/MISO)
- 数据发送(MOSI): 主设备通过 MOSI(Master Out Slave In)线向从设备发送数据。主设备和从设备在时钟的相应沿根据协议设置同步数据发送。
- 数据接收(MISO): 同时,从设备可以通过 MISO(Master In Slave Out)线向主设备发送数据。由于 SPI 是全双工通信,数据发送和接收可以在同一时刻进行。
通常数据位数为 8 位,主设备每发送一个字节,从设备无需应答主设备,发完一个数据之后,立即再发送下一个字节。数据的传输顺序一般是从最高位(MSB)到最低位(LSB),但也可以通过配置改变。
数据采样与移位
- 在数据传输过程中,数据位在时钟的某个边沿被送出,在另一边沿被接收。具体的数据采样时刻取决于时钟的极性(CPOL)和相位(CPHA)。
- 主设备和从设备内部有 移位寄存器,每次时钟脉冲会导致移位寄存器中的数据往左移一位,直至完成整个字节的发送和接收。
通信时序图
极性和相位
在 SPI 通信中,时钟极性(CPOL)和相位(CPHA)是用于定义时钟信号的特性和数据采样时间的两个重要参数。这两个参数决定了数据在何时发送和接收。为了确保主设备和从设备能够正确通信,双方的时钟极性和相位必须一致。
1. 时钟极性(CPOL)
CPOL 定义了时钟信号在空闲状态下的电平。
- CPOL = 0:空闲时钟线为 低电平。
- CPOL = 1:空闲时钟线为 高电平。
2. 时钟相位(CPHA)
CPHA 定义了数据采样的时刻,即在时钟的哪个边沿对数据进行采样。
- CPHA = 0:数据在第一个时钟边沿(时钟脉冲的第一个跳变沿,如上升沿或下降沿)进行采样或发送。
- CPHA = 1:数据在第二个时钟边沿(时钟脉冲的第二个跳变沿,如上升沿或下降沿)进行采样或发送。
SPI 的 4 种工作模式
由 CPOL 和 CPHA 的组合,SPI 有 4 种工作模式。这些模式规定了时钟信号的特性和数据传输的时序。主设备和从设备必须工作在相同的模式下,才能保证通信的正确性。
模式 0:CPOL = 0,CPHA = 0
- 时钟空闲状态为低电平。
- 数据在上升沿(第一个边沿)采样,在下降沿发送。
- 时钟处于低电平,数据在第一个上升沿采样。
模式 1:CPOL = 0,CPHA = 1
- 时钟空闲状态为低电平。
- 数据在下降沿(第二个边沿)采样,在上升沿发送。
- 时钟处于低电平,数据在第一个上升沿发送,第二个下降沿采样。
模式 2:CPOL = 1,CPHA = 0
- 时钟空闲状态为高电平。
- 数据在下降沿(第一个边沿)采样,在上升沿发送。
- 时钟处于高电平,数据在第一个下降沿采样。
模式 3:CPOL = 1,CPHA = 1
- 时钟空闲状态为高电平。
- 数据在上升沿(第二个边沿)采样,在下降沿发送。
- 时钟处于高电平,数据在第一个下降沿发送,第二个上升沿采样。
如何选择 CPOL 和 CPHA
- CPOL 决定了空闲时钟的电平状态(高电平或低电平)。
- CPHA 决定了数据在第一个边沿(上升沿或下降沿)还是第二个边沿进行采样。
- 不同的设备可能要求不同的工作模式,选择 CPOL 和 CPHA 时需参照从设备的规格文档。主设备和从设备的 SPI 模式必须匹配才能成功通信。
相关文章:

嵌入式通信原理—SPI总线通信原理与应用
文章目录 SPI 简介基本原理工作模式特点 SPI寻址方式1. 片选(Chip Select, CS)2. 多从设备通信3. 菊花链(Daisy-Chain)模式4. 地址寄存器(应用层) SPI通信过程时钟信号生成(SCLK)数据…...

基于web的 BBS论坛管理系统设计与实现
博主介绍:专注于Java .net php phython 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找不到哟 我的博客空间发布了1000毕设题目 方便大家学习使用 感兴趣的可以…...
【Scala入门学习】Scala的方法和函数
1. 方法 在scala中的操作符都被当成方法存在,比如说、-、*、/ 12就是1.(2)的调用, 2.0 是doule类型,强调用Int类型的写法为1.(2:Int) 1.1 方法的声明和使用 定义方法的语法: def 方法名([变量:变量类型ÿ…...

【JVM】概述
前言 Java的技术体系主要由支撑Java程序运行的虚拟机、提供各开发领域接口支持的Java类库、Java编程语言及许许多多的第三方Java框架(如Spring、MyBatis等)构成。在国内,有关Java类库API、Java语言语法及第三方框架的技术资料和书籍非常丰富&…...

鸿蒙开发笔记_电商严选02_登录页面跳转到我的页面、并传值
鸿蒙开发笔记整理,方便以后查阅! 由于上班较忙,只能抽空闲暇时间,快速整理更新中。。。 登录页面跳转到我的页面、并传值 效果图 我的设置页面 /*** 我的设置页面*/ import CommonConstants from ./CommonConstants import ItemData from ./ItemData import DataModel fr…...

clip论文阅读(Learning Transferable Visual Models From Natural Language Supervision)
目录 摘要训练pre-train model的过程将pre-train model应用于下游任务应用(待更新) 论文/项目地址:https://github.com/OpenAI/CLIP 提供了clip的pre-trained model的权重,也可安装使用pre-trained model 摘要 使用标签标注的图…...

用于图像分割的协 SMA Transformer:同多注意力转换器 !
在医学图像分割中,基于注意力机制和卷积神经网络的Transformer在提高性能方面起到了重要作用。然而,早期的模型往往在分割小而形状不规则的肿瘤时表现不佳。 为此,作者提出了一种基于SMA架构(Synergistic Multi-Attention…...
lodash中_.difference如何过滤数组
_.difference(array, [values]) 作用: 创建一个具有唯一array值的数组,每个值不包含在其他给定的数组中。(注:即创建一个新数组,这个数组中的值,为第一个数字(array 参数)排除了给…...
关于C# 数据库访问 转为 C++ CLI 数据库访问
Db_.cs 与 csharp_db.h功能是一样的。 Db_.cs /**************************************************************************************** 创建时间 :2006年12月19日文件名 :Db_.cs功能 :数据库…...

百度移动刷下拉词工具:快速出下拉词的技术分析
都2024年了,你还在做SEO百度下拉?答案当然是肯定的,虽然百度的搜索流量不如从前,但移动端的流量依然是巨大的!除了百度SEO快排以外,下拉也是一大流量入口,尤其是在移动端搜索的流量越来越大时&a…...
学习笔记-Golang中的Context
文章目录 1、什么是Context2、Context的作用3、Context的解析3.1、Context的源码解析3.2、 context包中实现context接口的四种结构体类型3.2.1、emptyCtx3.2.2、cancelCtx3.2.3、timerCtx3.2.4、valueCtx 4、总结 1、什么是Context Context是 Go 语言中的一个标准库࿰…...

ArrayList 源码解析
ArrayList是Java集合框架中的一个动态数组实现,提供了可变大小的数组功能。它继承自AbstractList并实现了List接口,是顺序容器,即元素存放的数据与放进去的顺序相同,允许放入null元素,底层通过数组实现。除该类未实现同…...
libgit2编译
1. 源码下载 libgit2源码下载 2. 编译要求 CMake下载 CMake教程 3. 编译步骤 Prerequisites Make sure CMake on your %PATH% Build Create a build directory beneath the libgit2 source directory, and change into it: mkdir build && cd buildCreate the …...
mac新手入门(快捷键)
系统常用快捷键 基本操作 Command-Z 撤销Command-X 剪切 Command-C 拷贝(Copy) Option Shift Command V 纯文本拷贝 Command-V 粘贴 Command-A 全选(All)Command-S 保存(Save) Command-F 查找࿰…...
curl 的使用详解
curl 是一个非常强大的命令行工具,用于通过各种协议(如 HTTP、HTTPS、FTP 等)传输数据。它广泛应用于测试 API、下载文件、调试网络请求等。 下面是 curl 常用功能的详解及示例: 基本语法 curl [options] [URL]1. 基本请求 发起…...

从基础到进阶:利用EasyCVR安防视频汇聚平台实现高效视频监控系统的五步走
随着科技的飞速发展,视频监控技术在社会安全、企业管理、智慧城市构建等领域扮演着越来越重要的角色。一个高效智能的视频监控管理系统不仅能够提升监控效率,还能在预防犯罪、事故预警、数据分析等方面发挥巨大作用。 一、需求分析 在设计视频监控管理…...

CORS漏洞及其防御措施:保护Web应用免受攻击
1. 背景- 什么是CORS? 在当今互联网时代,Web 应用程序的架构日益复杂。一个后端服务可能对应一个前端,也可能与多个前端进行交互。跨站资源共享(CORS)机制在这种复杂的架构中起着关键作用,但如果配置不当&…...

C语言自定义类型结构体(24)
文章目录 前言一、结构体类型的声明结构体回顾结构体的特殊声明结构体的自引用 二、结构体的内存对齐对齐规则为什么存在内存对齐?修改默认对齐数 三、结构体传参四、结构体实现位段什么是位段位段的内存分配位段的跨平台问题位段的应用位段使用的注意事项 总结 前言…...

补题篇--codeforces
传送门:Problem - 1881C - Codeforces 题目大意: 思路: 首先解决这个问题要知道 一个 ( x , y ) 顺时钟旋转 90 , 180 , 270可以得到 ( y , n - x 1 ) , ( n - x 1 , n - y 1 ) ,( n - y …...
【字幕】恋上数据结构与算法之015动态数组03简单接口的实现
我们先来看一下,不要着急啊大家不要着急,这些东西我肯定会一点一点会给大家去实现,最终实现到跟Java官方版本差不多,只要我们自己实现了,偶尔类似的,你会发现你倒回去看Java官方的那个源码,你会…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...