【Python入门第四十二天】Python丨NumPy 数组裁切
裁切数组
python 中裁切的意思是将元素从一个给定的索引带到另一个给定的索引。
我们像这样传递切片而不是索引:[start:end]。
我们还可以定义步长,如下所示:[start:end:step]。
如果我们不传递 start,则将其视为 0。
如果我们不传递 end,则视为该维度内数组的长度。
如果我们不传递 step,则视为 1。
实例
从下面的数组中裁切索引 1 到索引 5 的元素:
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7])print(arr[1:5])
运行实例
注释:结果包括了开始索引,但不包括结束索引。
实例
裁切数组中索引 4 到结尾的元素:
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7])print(arr[4:])
运行实例
实例
裁切从开头到索引 4(不包括)的元素:
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7])print(arr[:4])
运行实例
负裁切
使用减号运算符从末尾开始引用索引:
实例
从末尾开始的索引 3 到末尾开始的索引 1,对数组进行裁切:
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7])print(arr[-3:-1])
运行实例
STEP
请使用 step 值确定裁切的步长:
实例
从索引 1 到索引 5,返回相隔的元素:
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7])print(arr[1:5:2])
运行实例
实例
返回数组中相隔的元素:
import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7])print(arr[::2])
运行实例
裁切 2-D 数组
实例
从第二个元素开始,对从索引 1 到索引 4(不包括)的元素进行切片:
import numpy as nparr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])print(arr[1, 1:4])
运行实例
注释:请记得第二个元素的索引为 1。
实例
从两个元素中返回索引 2:
import numpy as nparr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])print(arr[0:2, 2])
运行实例
实例
从两个元素裁切索引 1 到索引 4(不包括),这将返回一个 2-D 数组:
import numpy as nparr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])print(arr[0:2, 1:4])
运行实例
相关文章:

【Python入门第四十二天】Python丨NumPy 数组裁切
裁切数组 python 中裁切的意思是将元素从一个给定的索引带到另一个给定的索引。 我们像这样传递切片而不是索引:[start:end]。 我们还可以定义步长,如下所示:[start:end:step]。 如果我们不传递 start&…...

Anaconda配置Python新版本tensorflow库(CPU、GPU通用)的方法
本文介绍在Anaconda环境中,下载并配置Python中机器学习、深度学习常用的新版tensorflow库的方法。 在之前的两篇文章基于Python TensorFlow Estimator的深度学习回归与分类代码——DNNRegressor(https://blog.csdn.net/zhebushibiaoshifu/article/detail…...

加载模型时出现 OSError: Unable to load weights from pytorch checkpoint file 报错的解决
加载模型时出现 OSError: Unable to load weights from pytorch checkpoint file 报错的解决报错信息原因查明网传解决措施好消息我的解决措施报错信息 查了下,在网上还是个比较常见的报错 一般为加载某模型时突然报错 原因查明 一般为下载某个 XXX_model.bin 的…...
sessionStorage , localStorage 和cookie的区别
一.sessionStorage(临时存储)sessionStorage是HTML5中新增的Web Storage API之一,用于在浏览器中存储键值对数据,与localStorage类似,但是sessionStorage存储的数据在会话结束时会被清除。可以通过以下方式使用sessionStorage:存储…...
C# 实例详解委托之Func、Action、delegate
委托是.NET编程的精髓之一,在日常编程中经常用到,在C#中实现委托主要有Func、Action、delegate三种方式,这个文章主要就这三种委托的用法通过实例展开讲解。 【Func】:Func是带返回值的委托: 原型函数如下(以下展示的…...

如何选电脑
1、CPU(中央处理器) 怎么看CPU型号:CPU:系列-代数等级核心显卡型号电压后缀 例如CPU:i7-10750H : 1、系列:Intel的酷睿i3、i5、i7、i9这四个系列的CPU,数字越大就代表越高端。 2、代数:代表…...

SpringBoot项目创建
如果使用spring的源地址创建项目失败,就使用 阿里云的springBoot项目创建地址:https://start.aliyun.com/ 1.new 一个新的项目: 2.选择合适的版本java的JDK和maven项目 3.选择spring web依赖 4.直接finish 5. 删除无用的包,然后…...

神经衰弱该如何判断?确诊为神经衰弱,日常要做好这7大护理!
神经衰弱是由于长时间处于紧张或者压力的情况下导致精神出现兴奋或者疲乏现象而伴随着一系列症状。如情绪烦恼、容易激怒、睡眠障碍、肌肉出现紧张性疼痛等,生活中有很多人在自己的不到休息或者遇到强大打击时就会嘲笑自己患上神经衰弱。甚至一些会盲目采取措施&…...

Linux之进程替换
进程替换1.什么是进程替换2.替换函数2.1 execl函数2.2 execv函数2.3 execlp函数2.4 execvp函数2.5 在自己的C程序上如何运行其他语言的程序?2.6 execle 函数2.7 小结3.一个简易的shell1.什么是进程替换 fork()之后,父子各自执行父进程代码的一部分&…...
关于清除浮动
浮动最早是用来做图文排版,为了让块级元素同行显示,而html中块元素是有自己的排列规则,一般独占一行。所以有了浮动元素,一旦元素浮动了就会脱离文档流,产生问题。怎么去清除浮动:(1)…...

Uber H3 index 地图索引思考
H3 是 uber 设计的六边形空间索引,go 语言操作包是 h3-go,可以通过经纬度获取所在的 h3 六边形边界,每个经纬度对应的六边形都是确定的,每个六边形唯一对应了一个 h3index。在业务开发中,我们可以通过 h3index 来对地理…...
多线程的几种状态
Java-多线程的几种状态🔎1.NEW( 系统中线程还未创建,只是有个Thread对象)🔎2.RUNNABLE( (就绪状态. 又可以分成正在工作中和即将开始工作)🔎3.TERMINATED(系统中的线程已经执行完了,Thread对象还在)🔎4.TIMED_WAITING(指定时间等待…...
【算法题】1574. 删除最短的子数组使剩余数组有序
题目: 给你一个整数数组 arr ,请你删除一个子数组(可以为空),使得 arr 中剩下的元素是 非递减 的。 一个子数组指的是原数组中连续的一个子序列。 请你返回满足题目要求的最短子数组的长度。 示例 1: …...

理解对数——金融问题中的自然对数(以e为底的对数)
第3章 金融问题(Financial Matters)——金融问题中的自然对数If thou lend moneyto any ofMy people. ...thou shalt not beto him as a creditor;neither shall yelay upon him interest.(如果你借钱给我的任何人。 ……你不应该是他的债权人;也不可向他加息。)——…...
vue2进阶学习之路
HTML、CSS和JavaScript基础 在学习Vue2之前,需要掌握HTML、CSS和JavaScript的基础知识。包括HTML的标签、CSS的布局和样式、JavaScript的变量类型、条件语句、循环语句等。 Vue2的基础知识 掌握Vue2的基本概念和语法,包括Vue2实例、数据绑定、指令、组件…...

决策树ID3算法
1. 决策树ID3算法的信息论基础 机器学习算法其实很古老,作为一个码农经常会不停的敲if, else if, else,其实就已经在用到决策树的思想了。只是你有没有想过,有这么多条件,用哪个条件特征先做if,哪个条件特征后做if比较优呢&#…...

C++模板基础(一)
函数模板(一) ● 使用 template 关键字引入模板: template void fun(T) {…} – 函数模板的声明与定义 – typename 关键字可以替换为 class ,含义相同 – 函数模板中包含了两对参数:函数形参 / 实参;模板形…...
生产者消费者模型线程池(纯代码)
目录 生产者消费者模型 条件变量&&互斥锁(阻塞队列) makefile Task.hpp BlockQueue.hpp BlockQueueTest.cc 信号量&&互斥锁(环形队列) makefile RingQueue.hpp RingQueueTest.cc 线程池(封…...
K8s 应用的网络可观测性: Cilium VS DeepFlow
随着分布式服务架构的流行,特别是微服务等设计理念在现代应用普及开来,应用中的服务变得越来越分散,因此服务之间的通信变得越来越依赖网络,很有必要来谈谈实现微服务可观测性中越来越重要的一环——云原生网络的可观测。K8s 是微服务设计理念能落地的最重要的承载体,本文…...

3.29面试题
文章目录内存内存管理执行过程要点面试题内存 内存管理 由JVM管理 堆:new出来的对象(包括成员变量、数组元素、方法的地址)栈:局部变量(包括方法的参数)方法区:.class字节码文件(…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...