当前位置: 首页 > news >正文

决策树ID3算法

1. 决策树ID3算法的信息论基础

机器学习算法其实很古老,作为一个码农经常会不停的敲if, else if, else,其实就已经在用到决策树的思想了。只是你有没有想过,有这么多条件,用哪个条件特征先做if,哪个条件特征后做if比较优呢?怎么准确的定量选择这个标准就是决策树机器学习算法的关键了。1970年代,一个叫昆兰的大牛找到了用信息论中的熵来度量决策树的决策选择过程,方法一出,它的简洁和高效就引起了轰动,昆兰把这个算法叫做ID3。下面我们就看看ID3算法是怎么选择特征的。

首先,我们需要熟悉信息论中熵的概念。熵度量了事物的不确定性,越不确定的事物,它的熵就越大。具体的,随机变量X的熵的表达式如下:

H(X)=−∑i=1npilogpiH(X) = -\sum\limits_{i=1}^{n}p_i logp_iH(X)=i=1npilogpi

其中n代表X的n种不同的离散取值。而pip_ipi代表了X取值为i的概率,log为以2或者e为底的对数。举个例子,比如X有2个可能的取值,而这两个取值各为1/2时X的熵最大,此时X具有最大的不确定性。值为H(X)=−(12log12+12log12)=log2H(X) = -(\frac{1}{2}log\frac{1}{2} + \frac{1}{2}log\frac{1}{2}) = log2H(X)=(21log21+21log21)=log2。如果一个值概率大于1/2,另一个值概率小于1/2,则不确定性减少,对应的熵也会减少。比如一个概率1/3,一个概率2/3,则对应熵为H(X)=−(13log13+23log23)=log3−23log2<log2)H(X) = -(\frac{1}{3}log\frac{1}{3} + \frac{2}{3}log\frac{2}{3}) = log3 - \frac{2}{3}log2 < log2)H(X)=(31log31+32log32)=log332log2<log2)

熟悉了一个变量X的熵,很容易推广到多个个变量的联合熵,这里给出两个变量X和Y的联合熵表达式:

H(X,Y)=−∑i=1np(xi,yi)logp(xi,yi)H(X,Y) = -\sum\limits_{i=1}^{n}p(x_i,y_i)logp(x_i,y_i)H(X,Y)=i=1np(xi,yi)logp(xi,yi)

有了联合熵,又可以得到条件熵的表达式H(X|Y),条件熵类似于条件概率,它度量了我们的X在知道Y以后剩下的不确定性。表达式如下:

H(X∣Y)=−∑i=1np(xi,yi)logp(xi∣yi)=∑j=1np(yj)H(X∣yj)H(X|Y) = -\sum\limits_{i=1}^{n}p(x_i,y_i)logp(x_i|y_i) = \sum\limits_{j=1}^{n}p(y_j)H(X|y_j)H(XY)=i=1np(xi,yi)logp(xiyi)=j=1np(yj)H(Xyj)

好吧,绕了一大圈,终于可以重新回到ID3算法了。我们刚才提到H(X)度量了X的不确定性,条件熵H(X|Y)度量了我们在知道Y以后X剩下的不确定性,那么H(X)-H(X|Y)呢?从上面的描述大家可以看出,它度量了X在知道Y以后不确定性减少程度,这个度量我们在信息论中称为互信息,,记为I(X,Y)。在决策树ID3算法中叫做信息增益。ID3算法就是用信息增益来判断当前节点应该用什么特征来构建决策树。信息增益大,则越适合用来分类。

上面一堆概念,大家估计比较晕,用下面这个图很容易明白他们的关系。左边的椭圆代表H(X),右边的椭圆代表H(Y),中间重合的部分就是我们的互信息或者信息增益I(X,Y), 左边的椭圆去掉重合部分就是H(X|Y),右边的椭圆去掉重合部分就是H(Y|X)。两个椭圆的并就是H(X,Y)。

2. 决策树ID3算法的思路

上面提到ID3算法就是用信息增益大小来判断当前节点应该用什么特征来构建决策树,用计算出的信息增益最大的特征来建立决策树的当前节点。这里我们举一个信息增益计算的具体的例子。比如我们有15个样本D,输出为0或者1。其中有9个输出为0, 6个输出为1。 样本中有个特征A,取值为A1,A2和A3。在取值为A1的样本的输出中,有3个输出为1, 2个输出为0,取值为A2的样本输出中,2个输出为1,3个输出为0, 在取值为A3的样本中,4个输出为1,1个输出为0.

样本D的熵为:H(D)=−(915log2915+615log2615)=0.971H(D) = -(\frac{9}{15}log_2\frac{9}{15} + \frac{6}{15}log_2\frac{6}{15}) = 0.971H(D)=(159log2159+156log2156)=0.971

样本D在特征下的条件熵为: H(D∣A)=515H(D1)+515H(D2)+515H(D3)H(D|A) = \frac{5}{15}H(D1) + \frac{5}{15}H(D2) + \frac{5}{15}H(D3)H(DA)=155H(D1)+155H(D2)+155H(D3)

=−515(35log235+25log225)−515(25log225+35log235)−515(45log245+15log215)=0.888= -\frac{5}{15}(\frac{3}{5}log_2\frac{3}{5} + \frac{2}{5}log_2\frac{2}{5}) - \frac{5}{15}(\frac{2}{5}log_2\frac{2}{5} + \frac{3}{5}log_2\frac{3}{5}) -\frac{5}{15}(\frac{4}{5}log_2\frac{4}{5} + \frac{1}{5}log_2\frac{1}{5}) = 0.888=155(53log253+52log252)155(52log252+53log253)155(54log254+51log251)=0.888

对应的信息增益为I(D,A)=H(D)−H(D∣A)=0.083I(D,A) = H(D) - H(D|A) = 0.083I(D,A)=H(D)H(DA)=0.083

下面我们看看具体算法过程大概是怎么样的。

输入的是m个样本,样本输出集合为D,每个样本有n个离散特征,特征集合即为A,输出为决策树T。

算法的过程为:

1)初始化信息增益的阈值ϵ

2)判断样本是否为同一类输出Di,如果是则返回单节点树T。标记类别为Di

3) 判断特征是否为空,如果是则返回单节点树T,标记类别为样本中输出类别D实例数最多的类别。

4)计算A中的各个特征(一共n个)对输出D的信息增益,选择信息增益最大的特征Ag

5) 如果Ag的信息增益小于阈值ϵ,则返回单节点树T,标记类别为样本中输出类别D实例数最多的类别。

6)否则,按特征Ag的不同取值Agi将对应的样本输出D分成不同的类别Di。每个类别产生一个子节点。对应特征值为Agi。返回增加了节点的数T。

7)对于所有的子节点,令D=Di,A=A−{Ag}递归调用2-6步,得到子树Ti并返回。

3. 决策树ID3算法的不足

ID3算法虽然提出了新思路,但是还是有很多值得改进的地方。

a)ID3没有考虑连续特征,比如长度,密度都是连续值,无法在ID3运用。这大大限制了ID3的用途。

b)ID3采用信息增益大的特征优先建立决策树的节点。很快就被人发现,在相同条件下,取值比较多的特征比取值少的特征信息增益大。比如一个变量有2个值,各为1/2,另一个变量为3个值,各为1/3,其实他们都是完全不确定的变量,但是取3个值的比取2个值的信息增益大。如果校正这个问题呢?

c) ID3算法对于缺失值的情况没有做考虑

d) 没有考虑过拟合的问题

相关文章:

决策树ID3算法

1. 决策树ID3算法的信息论基础 机器学习算法其实很古老&#xff0c;作为一个码农经常会不停的敲if, else if, else,其实就已经在用到决策树的思想了。只是你有没有想过&#xff0c;有这么多条件&#xff0c;用哪个条件特征先做if&#xff0c;哪个条件特征后做if比较优呢&#…...

C++模板基础(一)

函数模板&#xff08;一&#xff09; ● 使用 template 关键字引入模板&#xff1a; template void fun(T) {…} – 函数模板的声明与定义 – typename 关键字可以替换为 class &#xff0c;含义相同 – 函数模板中包含了两对参数&#xff1a;函数形参 / 实参&#xff1b;模板形…...

生产者消费者模型线程池(纯代码)

目录 生产者消费者模型 条件变量&&互斥锁&#xff08;阻塞队列&#xff09; makefile Task.hpp BlockQueue.hpp BlockQueueTest.cc 信号量&&互斥锁&#xff08;环形队列&#xff09; makefile RingQueue.hpp RingQueueTest.cc 线程池&#xff08;封…...

K8s 应用的网络可观测性: Cilium VS DeepFlow

随着分布式服务架构的流行,特别是微服务等设计理念在现代应用普及开来,应用中的服务变得越来越分散,因此服务之间的通信变得越来越依赖网络,很有必要来谈谈实现微服务可观测性中越来越重要的一环——云原生网络的可观测。K8s 是微服务设计理念能落地的最重要的承载体,本文…...

3.29面试题

文章目录内存内存管理执行过程要点面试题内存 内存管理 由JVM管理 堆&#xff1a;new出来的对象&#xff08;包括成员变量、数组元素、方法的地址&#xff09;栈&#xff1a;局部变量&#xff08;包括方法的参数&#xff09;方法区&#xff1a;.class字节码文件&#xff08;…...

操作系统漏洞发现

操作系统漏洞发现前言一、操作系统漏洞发现1.1 namp2. Goby3. Nessus二&#xff0c;进行渗透测试2.1 使用工具进行渗透1. metasploit2.2 EXP2.3 复现文章三&#xff0c;操作系统漏洞修复前言 不管是对于App来说&#xff0c;还是web站点来说&#xff0c;操作系统是必须的&#x…...

Linux gdb调试底层原理

TOC 前言 linux下gdb调试程序操作过程参考本人文章:gdb调试操作; 这里不再叙述; 本文主要内容是介绍GDB本地调试的底层调试原理&#xff0c;我们来看一下GDB是通过什么机制来控制被调试程序的执行顺序; 总结部分是断点调试的底层原理&#xff0c;可以直接跳转过去先看看大概…...

LC-1647. 字符频次唯一的最小删除次数(哈希+计数)

1647. 字符频次唯一的最小删除次数 难度中等56 如果字符串 s 中 不存在 两个不同字符 频次 相同的情况&#xff0c;就称 s 是 优质字符串 。 给你一个字符串 s&#xff0c;返回使 s 成为 优质字符串 需要删除的 最小 字符数。 字符串中字符的 频次 是该字符在字符串中的出现…...

HTTP状态码

100: 接受&#xff0c;正在继续处理 200: 请求成功&#xff0c;并返回数据 201: 请求已创建 202: 请求已接受 203: 请求成为&#xff0c;但未授权 204: 请求成功&#xff0c;没有内容 205: 请求成功&#xff0c;重置内容 206: 请求成功&#xff0c;返回部分内容 301: 永久性重定…...

【Linux】初见“which命令”,“find命令”以及linux执行命令优先级

文章目录1.which命令1.1 whereis命令1.2 locate命令1.3 搜索文件命令总结2.find命令2.1 find之exec用法2.2 管道符之xargs用法3 Linux常用命令4.命令执行优先级1.which命令 查找命令文件存放目录 搜索范围由环境变量PATH决定&#xff08;echo $PATH) which命令格式&#xff1…...

update case when 多字段,多条件, mysql中case when用法

文章目录 前言 sql示例 普通写法&#xff1a; update case when写法 update case when 多字段写法 case when语法 case when 的坑 1、不符合case when条件但是字段被更新为null了 解决方法一&#xff1a;添加where条件 解决方法二&#xff1a;添加else 原样输出 2、同一条数据符…...

mysql隐式转换 “undefined“字符串匹配到mysql int类型0值字段

描述&#xff1a;mysql 用字符串搜索 能搜到int类型查询结果 mysql int类型条件用字符串查询 table: CREATE TABLE all_participate_records (id bigint unsigned NOT NULL AUTO_INCREMENT,created_at datetime(3) DEFAULT NULL,updated_at datetime(3) DEFAULT NULL,deleted…...

Redis八股文

1.Redis是什么? Redis 是一个基于 C 语言开发的开源数据库&#xff08;BSD 许可&#xff09;&#xff0c;与传统数据库不同的是 Redis 的数据是存在内存中的&#xff08;内存数据库&#xff09;&#xff0c;读写速度非常快&#xff0c;被广泛应用于缓存方向。并且&#xff0c…...

InnoDB——详细解释锁的应用,一致性读,自增长与外键

一致性非锁定读 一致性的非锁定读&#xff08;consistent nonlocking read&#xff09;是指InnoDB存储引擎通过行多版本控制的方式读取当前执行时数据库中行的数据。 如果读取的行正在执行 行Delete或Update操作&#xff0c;这时读取操作不会因此去等待行上锁的释放。相反&…...

C++模板基础(四)

函数模板&#xff08;四&#xff09; ● 函数模板的实例化控制 – 显式实例化定义&#xff1a; template void fun(int) / template void fun(int) //header.h template<typename T> void fun(T x) {std::cout << x << std::endl; }//main.cpp #include&quo…...

pycharm使用记录

文章目录下载安装后续其他设置编辑器设置关于debug下载安装 直接去pycharm官网下载社区版&#xff0c;这个版本本来就是免费的&#xff0c;而且功能其实已经够了 后续其他设置 首先&#xff0c;第一次启动时&#xff0c;记得在preference->interpreter中设置python环境&a…...

Linux命令·kill·killall

Linux中的kill命令用来终止指定的进程&#xff08;terminate a process&#xff09;的运行&#xff0c;是Linux下进程管理的常用命令。通常&#xff0c;终止一个前台进程可以使用CtrlC键&#xff0c;但是&#xff0c;对于一个后台进程就须用kill命令来终止&#xff0c;我们就需…...

Linux /proc/version 文件解析

/proc/version文件里面的内容: Linux version 4.14.180-perf (oe-user@oe-host) (clang version 10.0.5 for Android NDK, GNU ld (GNU Binutils) 2.29.1.20180115) #1 SMP PREEMPT Wed Mar 29 18:55:02 CST 2023 /proc/version文件里面记录了如下内容: 1、Linux kernel的…...

【Django 网页Web开发】15. 实战项目:管理员增删改查,md5密码和密码重置(08)(保姆级图文)

目录1. model编写数据表2. 管理员列表2.1 admin.py视图文件2.2 admin_list.html2.3 url.py2.4 最终效果3. 管理员添加3.0 md5包的书写3.1 form.py表单组件3.2 admin.py视图文件3.3 引入公共的添加数据html3.4 url.py3.5 最终效果4. 管理员编辑4.0 form表单组件4.1 admin.py视图…...

STL容器之<array>

文章目录测试环境array介绍头文件模块类定义对象构造初始化元素访问容器大小迭代器其他函数测试环境 系统&#xff1a;ubuntu 22.04.2 LTS 64位 gcc版本&#xff1a;11.3.0 编辑器&#xff1a;vsCode 1.76.2 array介绍 array是固定大小的序列式容器&#xff0c;它包含按严格…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

麒麟系统使用-进行.NET开发

文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的&#xff0c;如果需要进行.NET开发&#xff0c;则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET&#xff0c;所以要进…...