P2847 [USACO16DEC] Moocast G
P2847 [USACO16DEC] Moocast G
[USACO16DEC] Moocast G
题面翻译
Farmer John 的 N N N 头牛 ( 1 ≤ N ≤ 1000 1 \leq N \leq 1000 1≤N≤1000) 为了在他们之间传播信息,想要组织一个"哞哞广播"系统。奶牛们决定去用步话机装备自己而不是在很远的距离之外互相哞哞叫,所以每一头奶牛都必须有一个步话机。这些步话机都有一个限制传播半径,但是奶牛们可以间接地通过中间奶牛传播信息,所以并不是每头牛都必须直接向其他每一头奶牛连边。
奶牛们需要去决定多少钱花在步话机上,如果他们花了 X X X, 那么他们都将会得到 X \sqrt{X} X 距离的步话机。所以,两头牛之间的欧几里得距离平方最多是 X X X。请帮助奶牛们找到最小的 X X X 使得图是强连通的。
题目描述
Farmer John’s N N N cows ( 1 ≤ N ≤ 1000 1 \leq N \leq 1000 1≤N≤1000) want to organize an emergency “moo-cast” system for broadcasting important messages among themselves.
Instead of mooing at each-other over long distances, the cows decide to equip themselves with walkie-talkies, one for each cow. These walkie-talkies each have a limited transmission radius, but cows can relay messages to one-another along a path consisting of several hops, so it is not necessary for every cow to be able to transmit directly to every other cow.
The cows need to decide how much money to spend on their walkie-talkies. If they spend X X X, they will each get a walkie-talkie capable of transmitting up to a distance of X \sqrt{X} X. That is, the squared distance between two cows must be at most X X X for them to be able to communicate.
Please help the cows determine the minimum integer value of X X X such that a broadcast from any cow will ultimately be able to reach every other cow.
输入格式
The first line of input contains N N N.
The next N N N lines each contain the x x x and y y y coordinates of a single cow. These are both integers in the range 0 … 25 , 000 0 \ldots 25,000 0…25,000.
输出格式
Write a single line of output containing the integer X X X giving the minimum amount the cows must spend on walkie-talkies.
样例 #1
样例输入 #1
4
1 3
5 4
7 2
6 1
样例输出 #1
17
提示
没有提示
题解
根本用不着二分答案嘛。直接 N 2 N^2 N2建边,跑一遍Kruskal。记录在最小生成树中的最长的一条边。显然只要使得这条边能够建立,那么这棵最小生成树中的所有的边都可以建立。答案就是最长的边的距离的平方,注意要用 d o u b l e double double存边权。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>using namespace std;const int maxn = 1e3+3;
int n, x[maxn], y[maxn], cnt, tot, f[maxn];
double Ans;
struct Edge{int u, v;double w;
}ed[maxn * maxn];
inline bool cmp(Edge a, Edge b){return a.w < b.w;
}
inline int find(int x){if(x == f[x]) return x;else return f[x] = find(f[x]);
}
inline void Kruskal(){for(int i=1; i<=n; i++) f[i] = i;for(int i=1; i<=n; i++){for(int j=1; j<=n; j++){if(i != j){++cnt;ed[cnt].u = i, ed[cnt].v = j, ed[cnt].w = sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));}}}sort(ed+1, ed+1+cnt, cmp);for(int i=1; i<=cnt; i++){int xx = find(ed[i].u), yy = find(ed[i].v);if(xx != yy){f[xx] = find(yy);tot ++;Ans = ed[i].w;}if(tot == n-1){break;}}
}int main(int argc, const char * argv[]){scanf("%d", &n);for(int i=1; i<=n; i++){scanf("%d%d", &x[i], &y[i]);}Kruskal();printf("%.0lf", Ans * Ans);
}
//Written by Kevin ☑
当然,最小生成树才是这道题的最优解
为什么呢?大家应该都学过勾股定理吧?在平面直角坐标系中,两点A(x1,y1),B(x2,y2)的距离|AB|等于 s q r t ( ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 sqrt((x1-x2)^2+(y1-y2)^2 sqrt((x1−x2)2+(y1−y2)2,而我们可以发现,我们最后要求的是最大的 ∣ A B ∣ 2 |AB|^2 ∣AB∣2,也就是 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 (x1-x2)^2+(y1-y2)^2 (x1−x2)2+(y1−y2)2(当然在C++里得写成(x1-x2) * (x1-x2)+(y1-y2) * (y1-y2)),所以,我们只要求出边权为两点距离平方的最小生成树中最长边的长就可以了。
首先,我们可以通过一次双重循环求出每条边的边权,然后再跑一边最小生成树算法。
被熟知的求最小生成树的算法有prime、kruskal两种,而这次我们的图是完全图(即图的每两点之间都有连边),而prime更适合跑稠密图,因此我们选用prime算法。
#include<bits/stdc++.h>
using namespace std;
long long n,i,j,x[1001],y[1001],p[1001][1001],d[1001],u,max1;
bool b[1001];
priority_queue<pair<long long,long long> >q;//堆优化
int main(int argc, const char * argv[]){scanf("%lld",&n);for (i=1;i<=n;i++)scanf("%lld%lld",&x[i],&y[i]);for (i=1;i<=n;i++)for (j=1;j<=n;j++)p[i][j]=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);//求出两两点之间的距离for (i=1;i<=n;i++) d[i]=1e11;d[1]=0;max1=0;q.push(make_pair(0,1));while (q.size()){u=q.top().second;q.pop();if (b[u]) continue;max1=max(max1,d[u]);//求出最大边权b[u]=true;for (i=1;i<=n;i++)if (d[i]>p[u][i]){d[i]=p[u][i];q.push(make_pair(-d[i],i));//prime}}printf("%lld",max1);return 0;
}
//Written by Kevin ☑︎
相关文章:
P2847 [USACO16DEC] Moocast G
P2847 [USACO16DEC] Moocast G [USACO16DEC] Moocast G 题面翻译 Farmer John 的 N N N 头牛 ( 1 ≤ N ≤ 1000 1 \leq N \leq 1000 1≤N≤1000) 为了在他们之间传播信息,想要组织一个"哞哞广播"系统。奶牛们决定去用步话机装备自己而不是在很远的距离…...
针对国内AIGC市场,国内目前出台了那些法律法规?
针对国内AIGC市场,特别是AI生成与合成内容方面,中国已经出台了一系列法律法规来规范其发展和应用。 图片源自“央视新闻” 以下是一些主要的法律法规: 一、国家层面的法律法规 《中华人民共和国网络安全法》 施行时间:2017年6月…...
Windows+Ubuntu双系统下时钟设置
Ubuntu默认把系统时间(硬件时钟)设置为UTC时间,并根据本地时区和夏令时设置自动调整本地时间,这是一种很合理很优雅的处理硬件时钟和本地时钟的模式。而Windows系统是默认情况下把系统时间设置为本地时间,历来独霸电脑…...
一些写leetcode的笔记
标准库中的string类没有实现像C#和Java中string类的split函数,所以想要分割字符串的时候需要我们自己手动实现。但是有了stringstream类就可以很容易的实现,stringstream默认遇到空格、tab、回车换行会停止字节流输出。 #include <sstream> #incl…...
shopify主题开发之template模板解析
在 Shopify 主题开发中,template 文件是核心部分,它们定义了店铺中不同页面的布局和结构。下面将详细介绍 Shopify 主题中的 template 模板。 一、template 文件结构 在 Shopify 主题中,templates 文件夹包含了所有用于生成店铺页面的模板文…...
Zookeeper学习
文章目录 学习第 1 章 Zookeeper 入门1.1 概述Zookeeper工作机制 1.2 特点1.3 数据结构1.4 应用场景统一命名服务统一配置管理统一集群管理服务器动态上下线软负载均衡 1.5 下载zookeeper 第 2 章 Zookeeper 本地安装2.1 本地模式安装安装前准备配置修改操作 Zookeeper本地安装…...
FAT32文件系统详细分析 (格式化SD nandSD卡)
FAT32 文件系统详细分析 (格式化 SD nand/SD 卡) 目录 FAT32 文件系统详细分析 (格式化 SD nand/SD 卡)1. 前言2.格式化 SD nand/SD 卡3.FAT32 文件系统分析3.1 保留区分析3.1.1 BPB(BIOS Parameter Block) 及 BS 区分析3.1.2 FSInfo 结构扇区分析3.1.3 引导扇区剩余扇区3.1.4 …...
通义灵码在Visual Studio上
通义灵码在Visual Studio上不好用,有时候会出现重影,不如原生的自动补全好用,原生的毕竟的根据语法来给出提示的。...
基于SpringBoot的招生宣传管理系统【附源码】
基于SpringBoot的招生宣传管理系统(源码L文说明文档) 目录 4 系统设计 4.1 系统概述 4.2系统功能结构设计 4.3数据库设计 4.3.1数据库E-R图设计 4.3.2 数据库表结构设计 5 系统实现 5.1管理员功能介绍 5.1.1管理员登录 …...
SOT23封装1A电流LDO具有使能功能的 1A、低 IQ、高精度、低压降稳压器系列TLV757P
前言 SOT23-5封装的外形和丝印 该LDO适合PCB空间较小的场合使用,多数SOT23封装的 LDO输出电流不超过0.5A。建议使用时输入串联二极管1N4001,PCB布局需要考虑散热,参考文末PCB布局。 1 特性 • 采用 SOT-23 (DYD) 封装,具有 60.3C/W RθJA •…...
python绘制3d建筑
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d.art3d import Poly3DCollection# 随机生成建筑块数据 def generate_building_blocks(num_blocks, grid_size100, height_range(5, 50), base_size_range(10, 30)):buildings []for _ in range(…...
机器学习实战21-基于XGBoost算法实现糖尿病数据集的分类预测模型及应用
大家好,我是微学AI,今天给大家介绍一下机器学习实战21-基于XGBoost算法实现糖尿病数据集的分类预测模型及应用。首先阐述了 XGBoost 算法的数学原理及公式,为模型构建提供理论基础。接着利用 kaggle 平台的糖尿病数据集,通过详细的…...
ElasticSearch数据类型和分词器
一、数据类型 1、Text (文本数据类型) 2、Keyword(关键字数据类型) 3、Alias(别名类型) 4、Arrays (集合类型) 5、Boolean(布尔类型) 6、日期类型 7、Numeric (数…...
【云原生监控】Prometheus之PushGateway
Prometheus之PushGateway 文章目录 Prometheus之PushGateway介绍作用资源列表基础环境一、部署PushGateway1.1、下载软件包1.2、解压软件包1.3、编辑配置systemctl启动文件1.4、创建日志目录1.5、加载并启动1.6、监控端口1.7、访问PushGateway 二、 配置Prometheus抓取PushGate…...
sqlalchemy JSON 字段写入时中文序列化问题
JSON字段定义 from sqlalchemy import Column, JSONclass Table(Base):__tablename__ "table"__table_args__ ({"comment": "表名称"})...extra Column(JSON, comment"其他属性")...局部序列化 def create(extra):table Table()#…...
C++ 类域+类的对象大小
个人主页:Jason_from_China-CSDN博客 所属栏目:C系统性学习_Jason_from_China的博客-CSDN博客 所属栏目:C知识点的补充_Jason_from_China的博客-CSDN博客 概念概述 类定义了一个新的作用域,类的所有成员都在类的作用域中ÿ…...
QT开发:深入详解QtCore模块事件处理,一文学懂QT 事件循环与处理机制
Qt 是一个跨平台的 C 应用程序框架,QtCore 模块提供了核心的非 GUI 功能。事件处理是 Qt 应用程序的重要组成部分。Qt 的事件处理机制包括事件循环和事件处理,它们共同确保应用程序能够响应用户输入、定时器事件和其他事件。 1. 事件循环(Ev…...
小米,B站网络安全岗位笔试题目+答案
《网安面试指南》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484339&idx1&sn356300f169de74e7a778b04bfbbbd0ab&chksmc0e47aeff793f3f9a5f7abcfa57695e8944e52bca2de2c7a3eb1aecb3c1e6b9cb6abe509d51f&scene21#wechat_redirect 《Java代码审…...
微信小程序中巧妙使用 wx:if 和 catchtouchmove 实现弹窗禁止页面滑动功能
大家好,今天我要和大家分享的是在微信小程序开发过程中,如何利用 wx:if 或 wx:elif 来条件性地渲染不同的元素,并结合 catchtouchmove 事件处理函数来解决弹窗弹出时禁止背后页面滑动,而弹窗消失时恢复滑动的功能。 在微信小程序…...
唯徳知识产权管理系统 DownloadFileWordTemplate 文件读取漏洞复现
0x01 产品简介 唯徳知识产权管理系统,由深圳市唯德科创信息有限公司精心打造,旨在为企业及代理机构提供全方位、高效、安全的知识产权管理解决方案。该系统集成了专利、商标、版权等知识产权的全面管理功能,并通过云平台实现远程在线办公,提升工作效率。是一款集知识产权申…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
