当前位置: 首页 > news >正文

数据结构——“二叉搜索树”

        二叉搜索树是一个很重要的数据结构,它的特殊结构可以在很短的时间复杂度找到我们想要的数据。最坏情况下的时间复杂度是O(n),最好是O(logn)。接下来看一看它的接口函数的实现。

        为了使用方便,这里采用模版的方式:

一、节点

template <class K>
struct BSnode
{BSnode(K key):_key(key){}K _key;BSnode* _left = nullptr;BSnode* _right = nullptr;
};

        _key用来储存数据,_left和_right用来储存左子树和右子树的节点。

二、搜索树的类的定义

template <class K>
class BSTree
{
private:using Node = BSnode<K>;Node* _root = nullptr;
};

        这里typedef了BSnode<K>为Node的类型,方便使用。并创建了根节点,缺省值为空指针。

三、搜索树的插入

        搜索树的结构是左子树所有节点的值小于等于根结点的值,右子树所有节点的值大于等于根节点的值。在这里我不考虑等于的情况,即一棵树中不允许出现相同的值。代码如下:

	//搜索树的插入bool Insert(K& key){Node* cur = _root;Node* parent = nullptr;if (cur == nullptr){_root = new Node(key);}else{while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}if (key > parent->_key)//插入的值大于父亲节点,那么就需要在父亲节点的右边插入{parent->_right = new Node(key);}else//插入的值小于父亲节点,那么就需要在父亲节点的左边插入{parent->_left = new Node(key);}}return true;}

        代码大体情况如下:

        1.第一次插入数据的时候,根节点指向空,需要单独讨论。

        2.根节点不为空,那么就根据搜索树的特点找到最后插入的位置,申请新节点,连接新节点。

        3.找不到插入的位置,即插入的数据已经存在,返回false。

四、搜索树的查找

	//搜索树的查找Node* Find(const K& key){assert(_root);Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key <  key){cur = cur->_right;}else{return cur;}}return nullptr;}

        这段代码是根据搜索树的特点进行查找(搜索的值大于根,那么去右子树查找,小于则去左子树查找),倘若找到,返回该节点指针,找不到,返回空指针。

五、搜索树的删除

        搜索树的删除偏向复杂,在我写出的代码中大致分为以下几点:

        1.删除的数据在叶子节点上。

        2.删除的节点不在叶子节点上,但是它的左右节点至少有一个是空。

        3.删除的节点不在叶子节点上,且左右子树都不为空。

        4.删除的节点在根节点,根节点至少有一个为空。

通过总结可以精简以上条件:

        1.删除的节点的左右节点至少有一个为空。

        2.删除的节点的左右节点都不为空。

代码如下:

	//搜索二叉树的删除bool Erase(const K& key){assert(_root);//先找到要删除的节点Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{break;}}//找不到要删除的数据,返回falseif (cur == nullptr)return false;//找到了//处理“该节点的左孩子或者右孩子为空,或者左右孩子均为空”if (cur->_left == nullptr || cur->_right == nullptr){//该节点是根,且且根节点至少一个子树为空if (parent == nullptr)//parent为空,证明输入的是根节点,且根节点至少一个子树为空 {_root->_left == nullptr ? _root = _root->_right : _root = _root->_left;delete cur;}//该节点是左孩子else if (cur == parent->_left){//左节点为空if (cur->_left == nullptr && cur->_right != nullptr){parent->_left = cur->_right;}//右节点为空else if(cur->_left != nullptr && cur->_right == nullptr){parent->_left = cur->_left;}//左右节点均为空else{parent->_left = nullptr;}//释放资源delete cur;}//该节点是右孩子else if (cur == parent->_right){//左节点为空if (cur->_left == nullptr && cur->_right != nullptr){parent->_right = cur->_right;}//右节点为空else if (cur->_left != nullptr && cur->_right == nullptr){parent->_right = cur->_left;}//左右节点均为空else{parent->_right = nullptr;}//释放资源delete cur;}}
//处理“该节点的左右孩子均不为空”else{//找到左节点的最大值Node* Fparent = cur;Node* Fcur = cur->_left;while (Fcur ->_right){Fparent = Fcur;Fcur = Fcur->_right;}//交换节点的值cur->_key = Fcur->_key;//Fcur的左边有数据if (Fcur->_left){Fparent->_right = Fcur->_left;delete Fcur;}//Fcur的左边没有数据else{if(Fcur == Fparent->_left){Fparent->_left = nullptr;}else{Fparent->_right = nullptr;}delete Fcur;}}return true;}

        首先是先要找到删除的数据,若找不到,返回false,若找到,那么进行下一步:

找到后还有如下情况:

        1.删除的节点的左右节点至少有一个为空。

        对应代码:

//处理“该节点的左孩子或者右孩子为空,或者左右孩子均为空”if (cur->_left == nullptr || cur->_right == nullptr){//该节点是根,且且根节点至少一个子树为空if (parent == nullptr)//parent为空,证明输入的是根节点,且根节点至少一个子树为空 {_root->_left == nullptr ? _root = _root->_right : _root = _root->_left;delete cur;}//该节点是左孩子else if (cur == parent->_left){//左节点为空if (cur->_left == nullptr && cur->_right != nullptr){parent->_left = cur->_right;}//右节点为空else if(cur->_left != nullptr && cur->_right == nullptr){parent->_left = cur->_left;}//左右节点均为空else{parent->_left = nullptr;}//释放资源delete cur;}//该节点是右孩子else if (cur == parent->_right){//左节点为空if (cur->_left == nullptr && cur->_right != nullptr){parent->_right = cur->_right;}//右节点为空else if (cur->_left != nullptr && cur->_right == nullptr){parent->_right = cur->_left;}//左右节点均为空else{parent->_right = nullptr;}//释放资源delete cur;}}

        原理:由于删除的节点左右子树至少有一个为空,那么就可以让父节点继承被删除节点的非空节点。继承后,删除该节点。如果被删除的节点的左右子树都为空,即被删除的节点是叶子节点,那么就可以直接删除叶子节点,然后将父节点指向空。

        以上代码分别对删除的节点是左子树还是右子树的情况下,删除的节点是否有左子树,是否有右子树,还是左右子树都没有进行讨论,涵盖所有情况。值得注意的是,当搜索树呈现链状的时候,如果删除的是根节点,此时的父节点是空,不能进行访问,那么需要在这里单独讨论。将根节点移动到有数据的那个子节点。

2.删除的节点的左右节点都不为空。

        对应代码:

//处理“该节点的左右孩子均不为空”else{//找到左节点的最大值Node* Fparent = cur;Node* Fcur = cur->_left;while (Fcur ->_right){Fparent = Fcur;Fcur = Fcur->_right;}//交换节点的值cur->_key = Fcur->_key;//Fcur的左边有数据if (Fcur->_left){Fparent->_right = Fcur->_left;delete Fcur;}//Fcur的左边没有数据else{if(Fcur == Fparent->_left){Fparent->_left = nullptr;}else{Fparent->_right = nullptr;}delete Fcur;}}

        第二种情况就不能直接进行交换。因为父节点没有多余的指针指向被删除节点的左右节点。那么在这里的思想是找到一个比被删除的节点的左孩子大,右孩子小。符合条件的是:左子树的最大值,或者右子树的最小值。找到之后交换节点值。但是还是需要注意的是,找到最大值以后,分为两种情况:

        a.最大值的左边为空。

        b.最大值的左边不为空。

那么进行讨论:比如删除的数据是8。

a.最大值的左边为空:

这个条件下可以直接交换删除

b.最大值的左边不为空:

        这种情况下就需要将父节点的右节点(最大值的位置)指向最大值的左节点。

在这段代码中:

			//找到左节点的最大值Node* Fparent = cur;Node* Fcur = cur->_left;while (Fcur ->_right){Fparent = Fcur;Fcur = Fcur->_right;}

        Node* Fparent = cur;的目的是避免这种情况下,空指针解引用的问题:删除的数据是3:

倘若Fparent 为空

        此时Fcur已经为叶子节点(已经为3的左子树的最大值),while循环不会进而以下代码会对Fparent解引用,造成访问空指针的错误。如果将Fparent复制为cur,那么从一开始,Fparent就是Fcur的父节点,既不违反逻辑,也解决了问题。

        因为此时1在父节点的左边,所以综上所述,再删除节点的同时也是需要判断被删除的节点是左节点还是右节点。

示例:

int main()
{BSTree<int> tree;int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };for (auto f : a){tree.Insert(f);}for (auto f : a){tree.Erase(f);tree.InTraversal();cout << endl;}return 0;
}

结果(中序遍历):

相关文章:

数据结构——“二叉搜索树”

二叉搜索树是一个很重要的数据结构&#xff0c;它的特殊结构可以在很短的时间复杂度找到我们想要的数据。最坏情况下的时间复杂度是O(n)&#xff0c;最好是O(logn)。接下来看一看它的接口函数的实现。 为了使用方便&#xff0c;这里采用模版的方式&#xff1a; 一、节点 temp…...

Java零基础-Java对象详解

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云/阿里云/华为云/51CTO&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互…...

从Prompt到创造:解锁AI的无限潜能

文章目录 &#x1f34a;AI内容创作核心&#xff1a;提示词Prompt1 什么是提示词工程?1.1 提示词的原理是什么&#xff1f;1.2 提示词工程师&#xff1a;百万年薪的职业&#xff1f;1.3 谁都能成为提示词工程师吗&#xff1f; 2 提示词书写的基本技巧3 常见的提示词框架3.1 CO-…...

sqlgun靶场攻略

打开界面 1.输入框测试回显点 -1union select 1,2,3#出现回显点 2.查看数据库名 -1union select 1,2,database()# 3.查看表名 -1union select 1,2,group_concat(table_name) from information_schema.tables where table_schemasqlgunnews# 4.查看admin表中列名 -1union se…...

《网络协议 - HTTP传输协议及状态码解析》

文章目录 一、HTTP协议结构图二、HTTP状态码解读1xx: 信息响应类2xx: 成功响应类3xx: 重定向类4xx: 客户端错误类5xx: 服务器错误类 一、HTTP协议结构图 二、HTTP状态码解读 HTTP状态码&#xff08;英语&#xff1a;HTTP Status Code&#xff09;是用以表示网页服务器超文本传…...

9.11 QT ( Day 4)

一、作业 1.Widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent> //定时器类 #include <QTime> #include <QtTextToSpeech> //文本转语音类QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEcl…...

利用AI驱动智能BI数据可视化-深度评测Amazon Quicksight(四)

简介 随着生成式人工智能的兴起&#xff0c;传统的 BI 报表功能已经无法满足用户对于自动化和智能化的需求&#xff0c;今天我们将介绍亚马逊云科技平台上的AI驱动数据可视化神器 – Quicksight&#xff0c;利用生成式AI的能力来加速业务决策&#xff0c;从而提高业务生产力。…...

2024.9最新:CUDA安装,pytorch库安装

目录 一、CUDA安装 1.查看自己电脑适配的CUDA的最高版本 2.安装CUDA 3.检查环境变量是否配置&#xff0c;安装是否成功 二、pytorch库安装 1.pytorch库下载 2.选择合适的版本 3.查看版本 一、CUDA安装 1.查看自己电脑适配的CUDA的最高版本 在命令提示符里输入nvidia-…...

Vue3.0组合式API:setup()函数

1、什么是组合式API Vue 3.0 中新增了组合式 API 的功能&#xff0c;它是一组附加的、基于函数的 API&#xff0c;可以更加灵活地组织组件代码。通过组合式 API 可以使用函数而不是声明选项的方式来编写 Vue 组件。因此&#xff0c;使用组合式 API 可以将组件代码编写为多个函…...

利用AI驱动智能BI数据可视化-深度评测Amazon Quicksight(三)

简介 随着生成式人工智能的兴起&#xff0c;传统的 BI 报表功能已经无法满足用户对于自动化和智能化的需求&#xff0c;今天我们将介绍亚马逊云科技平台上的AI驱动数据可视化神器 – Quicksight&#xff0c;利用生成式AI的能力来加速业务决策&#xff0c;从而提高业务生产力。…...

2022高教社杯全国大学生数学建模竞赛C题 问题一(1) Python代码演示

目录 问题 11.1 对这些玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析数据探索 -- 单个分类变量的绘图树形图条形图扇形图雷达图Cramer’s V 相关分析统计检验列联表分析卡方检验Fisher检验绘图堆积条形图分组条形图分类模型Logistic回归随机森林import matplotlib…...

Qt QSerialPort数据发送和接收DataComm

文章目录 Qt QSerialPort数据发送和接收DataComm2.添加 Qt Serial Port 模块3.实例源码 Qt QSerialPort数据发送和接收DataComm Qt 框架的Qt Serial Port 模块提供了访问串口的基本功能&#xff0c;包括串口通信参数配置和数据读写&#xff0c;使用 Qt Serial Port 模块就可以…...

macOS上谷歌浏览器的十大隐藏功能

谷歌浏览器&#xff08;Google Chrome&#xff09;在macOS上拥有一系列强大而隐蔽的特性&#xff0c;这些功能能显著提高您的浏览体验。从多设备同步到提升安全性和效率&#xff0c;这些被低估的功能等待着被发掘。我们将逐步探索这些功能&#xff0c;帮助您最大化利用谷歌浏览…...

【C++篇】C++类与对象深度解析(二):类的默认成员函数详解

文章目录 【C篇】C类与对象深度解析&#xff08;二&#xff09;前言1. 类的默认成员函数2. 构造函数2.1 函数名与类名相同2.2 无返回值2.3 对象实例化时系统会自动调用2.4 构造函数可以重载2.5 默认构造函数的生成规则2.6 无参构造函数与全缺省构造函数的关系2.7 内置类型与自定…...

Linux2-mkdir,touch,cat,more

1.相对路径和绝对路径 cd用于切换目录&#xff0c;对于路径可以用相对路径和绝对路径 例如&#xff1a;cd /home/user/public和cd public效果一样&#xff0c;都是将目录切换到HOME文件夹下的public文件夹 2.特殊路径符 .表示当前目录 ..表示上级目录 ~表示HOME目录 3.m…...

AI 时代程序员的应变之道

一、AI 浪潮来袭&#xff0c;编程界风云变幻 随着 AIGC 大语言模型如 ChatGPT、Midjourney、Claude 等的涌现&#xff0c;AI 辅助编程工具日益普及&#xff0c;程序员的工作方式正经历着深刻的变革。 分析公司 OReilly 日前发布的《2023 Generative AI in the Enterprise》报告…...

SQL编程题复习(24/9/16)

练习题 x40 10-74 获取商品表中商品名称含有“pad”的商品10-75 获取指定商品的商品分类名称&#xff08;多表查询&#xff09;10-76 为sh_goods表添加一行记录10-77 检索出sh_goods表中每项keyword对应的商品数量&#xff0c;查询结果显示字段依据输出样例设置10-78 查询sh_go…...

运维工程师面试整理-操作系统

在运维工程师的面试中,操作系统相关的知识通常是重中之重,尤其是Linux/Unix系统。以下是针对操作系统部分的一些详细内容,帮助你更好地准备面试。 1. Linux/Unix 基础 ● 常用命令 ○ 文件和目录管理:ls, cd, cp, mv, rm, mkdir, rmdir, find, grep, awk, sed...

Linux搭建邮箱服务器(简易版)

本章是上一文档的简易版本搭建方式更为快速简洁&#xff08;只需要两条命令即可搭建&#xff09;&#xff0c;如果想了解更详细一些可以看我上一文档 Linux接发邮件mailx_linux mailx o365-CSDN博客文章浏览阅读857次&#xff0c;点赞25次&#xff0c;收藏19次。本文详细描述了…...

基于SSM的社区爱心捐赠管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSSMVueMySQL的社区爱…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...