算法题解:斐波那契数列(C语言)
斐波那契数列
斐波那契数列是一个经典的数学序列,其中每一项的值是前两项的和。数列的前两项通常定义为0和1,即:
F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2) (n ≥ 2)
输入一个正整数n,求斐波那契数列的第n项。
样例
假设输入 n = 5,则其输出为:5,即斐波那契数列的第五项。
F(5) = F(4) + F(3)= (F(3) + F(2)) + (F(2) + F(1))= ((F(2) + F(1)) + (F(1) + F(0))) + (F(1) + F(0))= ((1 + 1) + (1 + 0)) + (1 + 0) = 5
下面我们将通过两种不同的算法来解决这个问题。
算法1
(递归)
递归算法是计算斐波那契数列的一种直观方法,基于定义中的递推公式,递归函数将从 n 向下递归到基准条件(n == 0 或 n == 1)。
递归实现思路:
- 基本情况:当
n等于0或1时,直接返回n; - 递归情况:对于其他
n,返回F(n-1) + F(n-2)。
C语言代码:
int Fibonacci(int n){if(n == 0 || n == 1){return n;}return Fibonacci(n - 1) + Fibonacci(n - 2);
}
时间复杂度:
递归算法的时间复杂度是 O(2^n),因为对于每个非基本情况的 n,我们都会调用两次递归函数,这会导致指数级的增长。
空间复杂度:
递归调用使用了栈空间,空间复杂度为 O(n),因为递归的深度最深为 n。
优缺点:
- 优点:实现简单,直观地基于斐波那契定义公式。
- 缺点:效率较低,存在大量重复计算,如
F(4)会多次被计算。
算法2
(动态规划)
为了避免递归中的重复计算,我们可以使用动态规划的思想。通过保存中间计算结果来提高效率。通过自底向上的方法,从 F(0) 和 F(1) 开始,逐步计算到 F(n)。
动态规划实现思路:
- 初始化两个变量
a = 0,b = 1,分别表示F(0)和F(1); - 迭代更新
a和b,每次计算F(i)时,a存储F(i-2)的值,b存储F(i-1)的值; - 最后返回
b,即为F(n)的值。
C语言代码:
int Fibonacci(int n) {if(n == 0) return 0;if(n == 1) return 1;int a = 0, b = 1, c;for(int i = 2; i <= n; i++) {c = a + b;a = b;b = c;}return b;
}
时间复杂度:
动态规划的时间复杂度是 O(n),因为我们只需要从 F(0) 计算到 F(n),每个数字仅计算一次。
空间复杂度:
空间复杂度为 O(1),因为只用了固定的几个变量来存储中间结果,不需要额外的数组。
优缺点:
- 优点:效率高,没有重复计算,时间复杂度从递归的
O(2^n)降到了O(n)。 - 缺点:相比递归实现稍微复杂一些。
参考文献
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.
- Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Fundamental Algorithms (3rd ed.). Addison-Wesley.
通过对比递归算法和动态规划算法,显然动态规划具有更优的性能。在实际编程中,推荐使用动态规划来解决斐波那契数列问题。
相关文章:
算法题解:斐波那契数列(C语言)
斐波那契数列 斐波那契数列是一个经典的数学序列,其中每一项的值是前两项的和。数列的前两项通常定义为0和1,即: F(0) 0 F(1) 1 F(n) F(n-1) F(n-2) (n ≥ 2)输入一个正整数n,求斐波那契数列的第n项。 样例 假设输入 n …...
SSM 框架 个人使用习惯 详细
SpringMVC主要是controller、service、dao(mapper)层交互 controller:处理数据请求的接口 service:处理请求的数据 dao(mapper):对数据进行持久化 下面我将对controller和service.impl进行讲…...
[羊城杯 2020]Blackcat1
知识点:数组加密绕过 进入页面熟悉的web三部曲(url地址,web源代码,web目录扫描) url地址没有什么东西去看看源代码. 这有一个mp3文件点一下看看. 在最后面发现了 PHP源码. if(empty($_POST[Black-Cat-Sheriff]) || em…...
腾讯云Ubuntu系统安装宝塔,配置Java环境,运行spring boot项目
致谢 本次学习宝塔部署spring boot项目,参考如下资料 https://www.cnblogs.com/daen/p/15997872.html 系统安装宝塔 直接用的腾讯云云服务器面板上的登录,你可以换成 xshell 进入宝塔官网: https://www.bt.cn/new/download.html 我们采…...
双亲委派机制知识点
类加载器 双亲委派模型 为什么采用双亲委派模型 打破双亲委派机制的场景 Tomcat 打破双亲委派机制:目的是可以加载不同版本的jar包 实现类隔离:在Tomcat中,每个Web应用使用独立的类加载器加载类文件,这样做的好处在于,当在同一T…...
vue part 11
vuex的模块化与namespace 115_尚硅谷Vue技术_vuex模块化namespace_1_哔哩哔哩_bilibili 116_尚硅谷Vue技术_vuex模块化namespace_2_哔哩哔哩_bilibili vue-router路由 很常见的很重要的应用:Ajax请求,将响应的数据替换掉原先的代码从而实现不跳转页面…...
【QT】常用类
欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:QT 目录 👉🏻QMediaPlayer👉🏻QMediaPlaylistsetPlaybackMode 👉🏻QDir👉…...
从index_put出发全面学习cuda和pytorch技术
一 前言 深感目前对于cuda和pytorch所涉及知识的广度和深度,但一时又不知道该如何去学习,经过多日的考虑,还是决定管中窥豹,从一个算子出发,抽丝剥茧,慢慢学习,把学习中碰到的问题都记录下来,希望可以坚持下去。 二 函数功能描述 【torch算子】torch.index_put和tor…...
浅谈住房城乡建设部科技创新平台布局重点方向
最近住房建设部组织开展住房城乡建设部科技创新平台(以下简称部科技创新平台)申报工作。详细内容见住房城乡建设部科技创新平台开始申报了 (qq.com)。在这里有4大方向共15个课题。内容见下图: 虽然我是做技术的,但是如何体现创新还…...
调用 write()函数后,如何知道数据是否已经写入磁盘?
在 Linux 中调用 write() 函数后,可以通过以下几种方式来确定数据是否已经写入磁盘: 一、使用同步函数 1. fsync() 函数: - 这个函数会强制将与文件描述符相关的所有修改过的内核缓冲区写入磁盘,并等待直到磁盘 I/O 操作完…...
策略路由与路由策略的区别
🐣个人主页 可惜已不在 🐤这篇在这个专栏 华为_可惜已不在的博客-CSDN博客 🐥有用的话就留下一个三连吧😼 目录 一、主体不同 二、方式不同 三、规则不同 四、定义和基本概念 一、主体不同 1、路由策略:是为了改…...
从底层原理上理解ClickHouse 中的稀疏索引
稀疏索引(Sparse Indexes)是 ClickHouse 中一个重要的加速查询机制。与传统数据库使用的 B-Tree 或哈希索引不同,ClickHouse 的稀疏索引并不是为每一行数据构建索引,而是为数据存储的块或部分数据生成索引。这种索引的核心思想是通…...
xtu oj 锐角三角形
锐角三角形 题目描述 n条边,任选3条边,能组成多少个锐角三角形(选的边不同就认为是不同的三角形)? 输入 第一个是一个整数T(1≤T≤1000),表示样例的个数。 每个样例占2行,第一行是一…...
MATLAB系列04:循环结构
MATLAB系列04:循环结构 4. 循环结构4.1 while循环4.2 for循环4.2.1 运算的细节4.2.2 break语句和continue语句4.2.3 嵌套循环 4.3 逻辑数组和向量化4.3.1 逻辑数组的重要性4.3.2 用 if/else 结构和逻辑数组创建等式 4.4 总结 4. 循环结构 循环(loop)是一种 MATLAB …...
虹科方案 | 精准零部件测试!多路汽车开关按键功能检测系统
欢迎关注虹科,为您提供最新资讯! #LIN/CAN总线 #零部件测试 #CAN数据 导读 在汽车制造业中,零部件的安全性、功能性和可靠性是确保车辆整体性能的关键。虹科针对车辆零部件的LIN/CAN总线仿真测试,提出了基于虹科Baby-LIN系列产…...
【加密算法基础——AES CBC模式代码解密实践】
AES 解密实践之代码实现 AES 解密使用python脚本比较灵活,但是一定要保证脚本是调试过的,才能在找到正确的密文,密钥,初始向量的情况下,解出正确的明文。但是对于AES解密,命令行无法处理key截断的问题。 实…...
【ViT+Dis】Deepfake Detection Scheme Based on Vision Transformer and Distillation
文章目录 Deepfake Detection Scheme Based on Vision Transformer and Distillationkey points深伪检测检测算法蒸馏法与教师网络实验训练:参数总结Deepfake Detection Scheme Based on Vision Transformer and Distillation 会议:2021 作者: key points 以往基于CNN结…...
maya-vray渲染蒙版
要用一个叫vrayMulWrapper的材质球,把alpha Conterbution调到-1,勾选matte surface启用蒙版物体。...
计网简简单单复习一下
文章目录 基础体系结构(分层模型)为什么要分层?OSI 七层模型?每一层的作用?TCP/IP 四层模型是什么?每一层的作用是什么?五层体系结构以及对应的协议每一层常见协议有哪些?从输入 URL 到页面展示到底发生了什么?URI和URL的区别;forward和redirect的区别DNS作用是什么?D…...
PyQt5-loading-圆环加载效果
效果预览 代码实现 from PyQt5.QtCore import QSize, pyqtProperty, QTimer, Qt, QThread, pyqtSignal from PyQt5.QtGui import QColor, QPainter from PyQt5.QtWidgets import QApplication, QWidget, QHBoxLayout, QPushButton, QVBoxLayout, QLabel, QGridLayoutclass Cir…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
