当前位置: 首页 > news >正文

LC并联电路在正弦稳态下的传递函数推导(LC并联谐振选频电路)

LC并联电路在正弦稳态下的传递函数推导(LC并联谐振选频电路)

本文通过 1.解微分方程、2.阻抗模型两种方法推导 LC 并联选频电路在正弦稳态条件下的传递函数,并通过仿真验证不同频率时 vo(t) 与 vi(t) 的幅值相角的关系。

电路介绍

已知条件

电路结构如下

LC并联电路

  • R:电阻值
  • C:电容值
  • L:电感值
  • 输入电源vi(t)
    v i ( t ) = V I c o s ( w t ) v_i(t) = V_Icos(wt) vi(t)=VIcos(wt)

其中

V I :输入电压的幅值 w :输入电源的角频率 w 2 π :输入正弦信号的频率 \begin{array}{c} V_I: 输入电压的幅值\\ w: 输入电源的角频率\\ \frac{w}{2\pi} :输入正弦信号的频率 \end{array} VI:输入电压的幅值w:输入电源的角频率2πw:输入正弦信号的频率

理论计算

1.解微分方程法

解微分方程法常用的四个步骤

  1. 根据节点法列写微分方程
  2. 找出特解 vp(t)
  3. 找出对应的齐次方程的通解 vh(t)
  4. 根据初始条件计算通解中的常数参数

总的通解为特解+齐次解

v ( t ) = v p ( t ) + v h ( t ) v(t) = v_p(t) + v_h(t) v(t)=vp(t)+vh(t)

v p ( t ) v_{p}(t) vp(t) ,特解

v h ( t ) v_{h}(t) vh(t) ,齐次解

1.1 列些微分方程

前置知识

  • 电容伏安特性: i = C d v d t i = C\frac{dv}{dt} i=Cdtdv
  • 电感伏安特性: v = L d i d t v = L\frac{di}{dt} v=Ldtdi
  • 电感伏安特性的积分形式:
    1 L ∫ − ∞ t v d t = i \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v \mathrm{d} t \end{aligned} = i L1tvdt=i

节点法列方程

v i ( t ) − v o ( t ) R = C d v o ( t ) d t + 1 L ∫ − ∞ t v o ( t ) d t \frac{v_i(t) - v_o(t)}{R} = C\frac{dv_o(t)}{dt} + \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v_o(t) \mathrm{d} t \end{aligned} Rvi(t)vo(t)=Cdtdvo(t)+L1tvo(t)dt

整理移相得

v i ( t ) R = C d v o ( t ) d t + 1 L ∫ − ∞ t v o ( t ) d t + v o ( t ) R \frac{v_i(t)}{R} = C\frac{dv_o(t)}{dt} + \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v_o(t) \mathrm{d} t \end{aligned} +\frac{v_o(t)}{R} Rvi(t)=Cdtdvo(t)+L1tvo(t)dt+Rvo(t)

等式两边对 t 微分,且带入 $
v_i(t) = V_Icos(wt)
$ 可得:

− w V I s i n ( w t ) R = C d v o 2 ( t ) d t 2 + 1 R d v o ( t ) d t + 1 L v o ( t ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ C\frac{dv_o^2(t)}{dt^2} +\frac{1}{R}\frac{dv_o(t)}{dt} + \frac{1}{L}v_o(t) \end{array} RwVIsin(wt)=Cdt2dvo2(t)+R1dtdvo(t)+L1vo(t)

1.2 找特解

设 vo(t) 的特解的形式为 v p ( t ) = A c o s ( w t + ϕ ) v_p(t) = Acos(wt+\phi) vp(t)=Acos(wt+ϕ),其中 A 和 ∅ 为要求得未知量,将 vp(t) 带入微分方程,可得:

− w V I s i n ( w t ) R = − C w 2 A c o s ( w t + ϕ ) − 1 R w A s i n ( w t + ϕ ) + 1 L A c o s ( w t + ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = -Cw^2Acos(wt+\phi) \\ -\frac{1}{R}wAsin(wt+\phi) + \frac{1}{L}Acos(wt+\phi) \end{array} RwVIsin(wt)=Cw2Acos(wt+ϕ)R1wAsin(wt+ϕ)+L1Acos(wt+ϕ)

利用三角函数的公式可得:

− w V I s i n ( w t ) R = − C w 2 A c o s ( w t ) c o s ( ϕ ) + C w 2 A s i n ( w t ) s i n ( ϕ ) − w A R s i n ( w t ) c o s ( ϕ ) − w A R c o s ( w t ) s i n ( ϕ ) + A L c o s ( w t ) c o s ( ϕ ) − A L s i n ( w t ) s i n ( ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = -Cw^2Acos(wt)cos(\phi) + \\ Cw^2Asin(wt)sin(\phi)-\frac{wA}{R}sin(wt)cos(\phi) \\ -\frac{wA}{R}cos(wt)sin(\phi) + \frac{A}{L}cos(wt)cos(\phi)\\ -\frac{A}{L}sin(wt)sin(\phi) \end{array} RwVIsin(wt)=Cw2Acos(wt)cos(ϕ)+Cw2Asin(wt)sin(ϕ)RwAsin(wt)cos(ϕ)RwAcos(wt)sin(ϕ)+LAcos(wt)cos(ϕ)LAsin(wt)sin(ϕ)

合并同类项

− w V I s i n ( w t ) R = ( A L − C w 2 A ) c o s ( w t ) c o s ( ϕ ) + ( C w 2 A − A L ) s i n ( w t ) s i n ( ϕ ) − w A R s i n ( w t ) c o s ( ϕ ) − w A R c o s ( w t ) s i n ( ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ (\frac{A}{L}-Cw^2A)cos(wt)cos(\phi) + \\ (Cw^2A-\frac{A}{L})sin(wt)sin(\phi)-\\ \frac{wA}{R}sin(wt)cos(\phi) \\ -\frac{wA}{R}cos(wt)sin(\phi) \end{array} RwVIsin(wt)=(LACw2A)cos(wt)cos(ϕ)+(Cw2ALA)sin(wt)sin(ϕ)RwAsin(wt)cos(ϕ)RwAcos(wt)sin(ϕ)

提公因式

− w V I s i n ( w t ) R = ( A L − C w 2 A ) ( c o s ( w t ) c o s ( ϕ ) − s i n ( w t ) s i n ( ϕ ) ) − w A R ( s i n ( w t ) c o s ( ϕ ) + c o s ( w t ) s i n ( ϕ ) ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ (\frac{A}{L}-Cw^2A)(cos(wt)cos(\phi)\\ -sin(wt)sin(\phi))\\ -\frac{wA}{R}(sin(wt)cos(\phi) \\ +cos(wt)sin(\phi)) \end{array} RwVIsin(wt)=(LACw2A)(cos(wt)cos(ϕ)sin(wt)sin(ϕ))RwA(sin(wt)cos(ϕ)+cos(wt)sin(ϕ))

利用三角函数公式合并

− w V I s i n ( w t ) R = ( A L − C w 2 A ) c o s ( w t + ϕ ) − w A R s i n ( w t + ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ (\frac{A}{L}-Cw^2A)cos(wt+\phi) \\ -\frac{wA}{R}sin(wt+\phi) \end{array} RwVIsin(wt)=(LACw2A)cos(wt+ϕ)RwAsin(wt+ϕ)

根据以下公式

A 1 c o s ( θ ) − A 2 s i n ( θ ) = A 1 2 + A 2 2 s i n ( θ − t a n − 1 ( A 1 A 2 ) ) \begin{array}{c} A_1cos(\theta) - A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}sin(\theta-tan^{-1}(\frac{A_1}{A_2})) \end{array} A1cos(θ)A2sin(θ)=A12+A22 sin(θtan1(A2A1))

可以继续合并化简为:

− w V I s i n ( w t ) R = ( A L − C w 2 A ) 2 + ( w A R ) 2 ∗ s i n ( w t + ϕ − t a n − 1 ( A L − C w 2 A w A R ) ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ \sqrt{(\frac{A}{L}-Cw^2A)^2+(\frac{wA}{R})^2}*\\ sin(wt+\phi-tan^{-1}(\frac{\frac{A}{L}-Cw^2A}{\frac{wA}{R}})) \end{array} RwVIsin(wt)=(LACw2A)2+(RwA)2 sin(wt+ϕtan1(RwALACw2A))

令对应位置相等,可得

− w V I R = ( A L − C w 2 A ) 2 + ( w A R ) 2 \begin{array}{c} \frac{-wV_I}{R} = \sqrt{(\frac{A}{L}-Cw^2A)^2+(\frac{wA}{R})^2} \end{array} RwVI=(LACw2A)2+(RwA)2

ϕ = t a n − 1 ( R ( 1 − C w 2 L ) w L ) \begin{array}{c} \phi = tan^{-1}(\frac{R(1-Cw^2L)}{wL}) \end{array} ϕ=tan1(wLR(1Cw2L))

化简上式可得

( w V I ) 2 R 2 = ( A L − C w 2 A ) 2 + ( w A R ) 2 \begin{array}{c} \frac{(wV_I)^2}{R^2} = (\frac{A}{L}-Cw^2A)^2+(\frac{wA}{R})^2 \end{array} R2(wVI)2=(LACw2A)2+(RwA)2

分解因式

( w V I ) 2 R 2 = A 2 L 2 + ( C w 2 A ) 2 − 2 A L C w 2 A + ( w A R ) 2 \begin{array}{c} \frac{(wV_I)^2}{R^2} = \\ \frac{A^2}{L^2}+(Cw^2A)^2-2\frac{A}{L}Cw^2A+(\frac{wA}{R})^2 \end{array} R2(wVI)2=L2A2+(Cw2A)22LACw2A+(RwA)2

两边同时乘以 L2R2

( L w V I ) 2 = A 2 R 2 + ( L R C w 2 A ) 2 − 2 A 2 L R 2 C w 2 + ( L w A ) 2 \begin{array}{c} (LwV_I)^2 = A^2R^2+(LRCw^2A)^2\\ -2A^2LR^2Cw^2+(LwA)^2 \end{array} (LwVI)2=A2R2+(LRCw2A)22A2LR2Cw2+(LwA)2

提出 A 移项整理得

A 2 = ( L w V I ) 2 R 2 + ( L R C w 2 ) 2 − 2 L R 2 C w 2 + ( L w ) 2 \begin{array}{c} A^2 = \frac{(LwV_I)^2}{R^2+(LRCw^2)^2 -2LR^2Cw^2+(Lw)^2} \end{array} A2=R2+(LRCw2)22LR2Cw2+(Lw)2(LwVI)2

分式上下同时除以 (Lw)2

A 2 = V I 2 ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A^2 = \frac{V_I^2}{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1} \end{array} A2=(LwR)2+(RCw)2L2R2C+1VI2

两边开方,同时只取正解

A = V I ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A = \frac{V_I}{\sqrt{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1}} \end{array} A=(LwR)2+(RCw)2L2R2C+1 VI

因此,可得 vp

v p ( t ) = A c o s ( w t + ϕ ) v_p(t) = A cos(wt + \phi) vp(t)=Acos(wt+ϕ)

其中:

A = V I ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A = \frac{V_I}{\sqrt{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1}} \end{array} A=(LwR)2+(RCw)2L2R2C+1 VI

ϕ = t a n − 1 ( R ( 1 − C w 2 L ) w L ) \begin{array}{c} \phi = tan^{-1}(\frac{R(1-Cw^2L)}{wL}) \end{array} ϕ=tan1(wLR(1Cw2L))

1.3 找通解

微分方程对应的齐次方程为

0 = C d v o 2 ( t ) d t 2 + 1 R d v o ( t ) d t + 1 L v o ( t ) \begin{array}{c} 0 = C\frac{dv_o^2(t)}{dt^2} +\frac{1}{R}\frac{dv_o(t)}{dt} + \frac{1}{L}v_o(t) \end{array} 0=Cdt2dvo2(t)+R1dtdvo(t)+L1vo(t)

设齐次微分方程解的形式为

v h = A e s t \begin{array}{c} v_h = Ae^{st} \end{array} vh=Aest

其中 A 和 s 为待确定的参数,带入可得

0 = C A s 2 e s t + 1 R s A e s t + 1 L A e s t \begin{array}{c} 0 = CAs^2e^{st} + \frac{1}{R} sAe^{st} + \frac{1}{L}Ae^{st} \end{array} 0=CAs2est+R1sAest+L1Aest

不考虑 A 为 0 的情况,约掉同类项后可得

0 = C s 2 + 1 R s + 1 L \begin{array}{c} 0 = Cs^2 + \frac{1}{R} s + \frac{1}{L} \end{array} 0=Cs2+R1s+L1

解得

s 1 = − ( 1 R − 1 R 2 − 4 C L ) 2 C \begin{array}{c} s_1 = \frac{-(\frac{1}{R}-\sqrt{\frac{1}{R^2} - \frac{4C}{L}})}{2C} \end{array} s1=2C(R1R21L4C )

s 2 = − ( 1 R + 1 R 2 − 4 C L ) 2 C \begin{array}{c} s_2 = \frac{-(\frac{1}{R}+\sqrt{\frac{1}{R^2} - \frac{4C}{L}})}{2C} \end{array} s2=2C(R1+R21L4C )

可得

v h = A 1 e s 1 t + A 2 e s 2 t \begin{array}{c} v_h = A_1e^{s_1t} + A_2e^{s_2t} \end{array} vh=A1es1t+A2es2t

因为 C > 0,L > 0,所以

( 1 R 2 − 4 C L ) < 1 R 2 \begin{array}{c} (\frac{1}{R^2} - \frac{4C}{L}) < \frac{1}{R^2} \end{array} (R21L4C)<R21

所以
( 1 R − 1 R 2 − 4 C L ) > 0 \begin{array}{c} (\frac{1}{R}-\sqrt{\frac{1}{R^2} - \frac{4C}{L}}) > 0 \end{array} (R1R21L4C )>0

所以 s1 < 0,s2 < 0

同时,我们讨论的是正弦稳态的情况下的响应,所以 t 趋近于无限长,此时

A 1 e s 1 t → 0 , A 2 e s 2 t → 0 A_1e^{s_1t} \rightarrow 0,\qquad A_2e^{s_2t} \rightarrow 0 A1es1t0,A2es2t0

所以 vh = 0。

1.4 根据初始条件确定参数

由于稳态条件下通解为 0, 所以这一步不需要了。

1.5 最终的解

至此,用微分方程的方法得到的最终的解为

v o ( t ) = v p ( t ) + v h ( t ) v_o(t) = v_p(t) + v_h(t) vo(t)=vp(t)+vh(t)

v o ( t ) = A c o s ( w t + ϕ ) v_o(t) = A cos(wt + \phi) vo(t)=Acos(wt+ϕ)

其中:

A = V I ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A = \frac{V_I}{\sqrt{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1}} \end{array} A=(LwR)2+(RCw)2L2R2C+1 VI

ϕ = t a n − 1 ( R ( 1 − C w 2 L ) w L ) \begin{array}{c} \phi = tan^{-1}(\frac{R(1-Cw^2L)}{wL}) \end{array} ϕ=tan1(wLR(1Cw2L))

2.阻抗模型方法

阻抗模型下的电路示意图
阻抗模型

2.1 基础知识

电阻的阻抗模型:
Z R = R Z_R = R ZR=R

电容的阻抗模型:

Z C = 1 j w C Z_C = \frac{1}{jwC} ZC=jwC1

电感的阻抗模型:

Z L = j w L Z_L = jwL ZL=jwL

阻抗模型里,输入输出都是复数。

复数输入 Vi 为:

V i = V I e j w t V_i = V_Ie^{jwt} Vi=VIejwt

复数输出 Vo 为:

V o = V O e j w t + ϕ V_o = V_Oe^{jwt + \phi} Vo=VOejwt+ϕ

2.2 计算过程

阻抗模型的适用条件是正弦稳态条件下,可以直接利用分压法进行计算。

V o ( t ) = V i ( t ) Z C / / Z L Z R + Z C / / Z L V_o(t) = V_i(t) \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} Vo(t)=Vi(t)ZR+ZC//ZLZC//ZL

其中

Z C / / Z L = 1 j w C + 1 j w L Z_C // Z_L = \frac{1}{jwC + \frac{1}{jwL}} ZC//ZL=jwC+jwL11

带入,可得

Z C / / Z L Z R + Z C / / Z L = 1 j w C + 1 j w L R + 1 j w C + 1 j w L \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{\frac{1}{jwC + \frac{1}{jwL}}}{R+\frac{1}{jwC + \frac{1}{jwL}}} \end{array} ZR+ZC//ZLZC//ZL=R+jwC+jwL11jwC+jwL11

分子分母同时除以

1 j w C + 1 j w L \frac{1}{jwC + \frac{1}{jwL}} jwC+jwL11

可得

Z C / / Z L Z R + Z C / / Z L = 1 R ( j w C + 1 j w L ) + 1 \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{R(jwC+\frac{1}{jwL})+1} \end{array} ZR+ZC//ZLZC//ZL=R(jwC+jwL1)+11

继续化简

Z C / / Z L Z R + Z C / / Z L = 1 j ( R w C − R w L ) + 1 \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{j(RwC-\frac{R}{wL})+1} \end{array} ZR+ZC//ZLZC//ZL=j(RwCwLR)+11

用复数的角坐标表示

Z C / / Z L Z R + Z C / / Z L = 1 1 + ( R w C − R w L ) 2 e j t a n − 1 ( R w C − R w L ) \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{\sqrt{1+(RwC-\frac{R}{wL})^2}e^{jtan^{-1}(RwC-\frac{R}{wL})}} \end{array} ZR+ZC//ZLZC//ZL=1+(RwCwLR)2 ejtan1(RwCwLR)1

拆分并化简倒数为负指数
Z C / / Z L Z R + Z C / / Z L = 1 1 + ( R w C − R w L ) 2 e − j t a n − 1 ( R w C − R w L ) \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{\sqrt{1+(RwC-\frac{R}{wL})^2}} e^{-jtan^{-1}(RwC-\frac{R}{wL})} \end{array} ZR+ZC//ZLZC//ZL=1+(RwCwLR)2 1ejtan1(RwCwLR)

将Vi(t),Vo(t)以及上边的传递函数带入

V o ( t ) = V i ( t ) Z C / / Z L Z R + Z C / / Z L \begin{array}{c} V_o(t) = V_i(t) \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} \end{array} Vo(t)=Vi(t)ZR+ZC//ZLZC//ZL

可得

V O e j ( w t + ϕ ) = V I e j w t 1 1 + ( R w C − R w L ) 2 e − j t a n − 1 ( R w C − R w L ) \begin{array}{c} V_Oe^{j(wt + \phi)} = \\ V_Ie^{jwt}\frac{1}{\sqrt{1+(RwC-\frac{R}{wL})^2}} e^{-jtan^{-1}(RwC-\frac{R}{wL})} \end{array} VOej(wt+ϕ)=VIejwt1+(RwCwLR)2 1ejtan1(RwCwLR)

合并化简可得

V O e j ( w t + ϕ ) = V I 1 + ( R w C − R w L ) 2 e j ( w t − t a n − 1 ( R w C − R w L ) ) \begin{array}{c} V_Oe^{j(wt + \phi)} =\\ \frac{V_I}{\sqrt{1+(RwC-\frac{R}{wL})^2}} e^{j(wt-tan^{-1}(RwC-\frac{R}{wL}))} \end{array} VOej(wt+ϕ)=1+(RwCwLR)2 VIej(wttan1(RwCwLR))

取对应项相等,可得

V O = V I 1 + ( R w C − R w L ) 2 \begin{array}{c} V_O= \frac{V_I}{\sqrt{1+(RwC-\frac{R}{wL})^2}} \end{array} VO=1+(RwCwLR)2 VI

ϕ = − t a n − 1 ( R w C − R w L ) \phi =-tan^{-1}(RwC-\frac{R}{wL}) ϕ=tan1(RwCwLR)

根据欧拉公式展开,并取虚部即为要求的时域部分的结果

v o ( t ) = V O c o s ( w t + ϕ ) v_o(t) = V_Ocos(wt+\phi) vo(t)=VOcos(wt+ϕ)

其中

V O = V I 1 + ( R w C − R w L ) 2 V_O= \frac{V_I}{\sqrt{1+(RwC-\frac{R}{wL})^2}} VO=1+(RwCwLR)2 VI

ϕ = − t a n − 1 ( R w C − R w L ) \phi =-tan^{-1}(RwC-\frac{R}{wL}) ϕ=tan1(RwCwLR)

与微分方程计算的结果一致。

绘制函数曲线

传递函数

使用函数绘制工具,以 w 作为变量,绘制传递函数的曲线,并调整 L,R,C 参数,观察不同参数对传递函数的影响,绘制演示如下

下面视频是不同 w 下的幅值变化曲线,可以观察到改变 L 可以调整谐振频率,更改 C 既会影响谐振频率,又会改变通频带的胖瘦(品质因数 Q ),更改 R 只改变胖瘦(品质因数 Q ),不改变谐振频率,在谐振频率处传递函数的幅值为1,说明输出幅值与输入幅值相等。

LC并联电路传递函数幅值随w的变化

下面是不同 w 下的相角变化曲线,上下的角度是正负 90°,改变 R 不会改变谐振频率,在谐振频率相角为 0°。

LC并联电路相角随w的变化

通过曲线图可以看到,电阻会影响品质因数,但是不会改变谐振频率,谐振频率处的输出信号幅值与输入相等,相角偏移为0,说明谐振时,输出与输入完全一致。

谐振频率为:

F = 1 2 π L C F = \frac{1}{2\pi\sqrt{LC}} F=2πLC 1

电路的品质因数 Q 为谐振频率 与 带宽的比值,带宽是幅值为幅值为谐振点幅值的 0.707 倍时的频率点的差值,因此,波形越瘦,电路的品质因数越高,改变电阻可以改变品质因数。

仿真验证

下图仿真在谐振点时输入信号与输出信号完全相同

谐振点仿真结果

下图是扫频的仿真,可以看到,在谐振点处传递函数幅值最大为 1,且相角为0.

交流扫频仿真结果

参考

正弦稳态:https://www.bilibili.com/video/BV1ts411v7Ep?p=17

阻抗模型:https://www.bilibili.com/video/BV1ts411v7Ep?p=19

电路的 Q 值: https://www.crystal-radio.eu/enlckring.htm#q

相关文章:

LC并联电路在正弦稳态下的传递函数推导(LC并联谐振选频电路)

LC并联电路在正弦稳态下的传递函数推导&#xff08;LC并联谐振选频电路&#xff09; 本文通过 1.解微分方程、2.阻抗模型两种方法推导 LC 并联选频电路在正弦稳态条件下的传递函数&#xff0c;并通过仿真验证不同频率时 vo(t) 与 vi(t) 的幅值相角的关系。 电路介绍 已知条件…...

【前后端】大文件切片上传

Ruoyi框架上传文件_若依微服务框架 文件上传-CSDN博客 原理介绍 大文件上传时&#xff0c;如果直接上传整个文件&#xff0c;可能会因为文件过大导致上传失败、服务器超时或内存溢出等问题。因此&#xff0c;通常采用文件切片&#xff08;Chunking&#xff09;的方式来解决这些…...

图像处理 -- ISP功能之局部对比度增强 LCE

局部对比度增强&#xff08;LCE&#xff09; 局部对比度增强&#xff08;Local Contrast Enhancement, LCE&#xff09;是一种图像处理技术&#xff0c;旨在通过调整图像的局部区域对比度&#xff0c;增强图像细节和视觉效果。LCE 的实现方式多种多样&#xff0c;以下是几种常…...

C++速通LeetCode简单第5题-回文链表

解法1&#xff0c;堆栈O(n)简单法&#xff1a; /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListN…...

【Java 优选算法】双指针(下)

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 有效三角形的个数 题目链接 解法 解法1:暴力枚举--->O(n^3) 解法2:利用单调性,使用双指针来解决---->O(n^2) 优化:对整个数组进行排序先固定最大数在最大数的左…...

动态规划:07.路径问题_珠宝的最大价值_C++

题目链接&#xff1a;LCR 166. 珠宝的最高价值 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/description/ 一、题目解析 题目&#xff1a; 解析&#xff1a; 有过做前几道题的经验&#xff0c;我们会发现这道题其实就…...

COMDEL电源CX2500S RF13.56MHZ RF GENERATOR手侧

COMDEL电源CX2500S RF13.56MHZ RF GENERATOR手侧...

GPU加速生物信息分析的尝试

GPU工具分类 实话实说&#xff0c;暂时只有英伟达的GPU才能实现比较方便的基因组分析集成化解决方案&#xff0c;其他卡还需要努力呀&#xff0c;或者需要商业公司或学术团体的努力开发呀&#xff01;FPGA等这种专用卡的解决方案也是有的&#xff0c;比如某测序仪厂家&#xf…...

【零散技术】详解Odoo17邮件发送(一)

序言:时间是我们最宝贵的财富,珍惜手上的每个时分 Odoo的邮件功能十分强大&#xff0c;在非常多的场景中可以看见其应用&#xff0c;例如原生的用户邀请&#xff0c;报价单发送&#xff0c;询价单发送等等.... 那么抛开原生自带的功能&#xff0c;我们如何巧妙的通过代码进行自…...

函数题 6-5 求自定类型元素的最大值【PAT】

文章目录 题目函数接口定义裁判测试程序样例输入样例输出样例 题解解题思路完整代码AC代码 编程练习题目集目录 题目 要求实现一个函数&#xff0c;求N个集合元素S[]中的最大值&#xff0c;其中集合元素的类型为自定义的ElementType。 函数接口定义 ElementType Max( Element…...

Python---爬虫

文章目录 目录 前言 一.Http请求/响应模块 requests模块 二.文本筛选模块 re模块 XPath模块 XPath 路径表达式 XPath 语法元素 三. 爬虫模板 爬虫案例 前言 Python爬虫是一种通过自动化程序爬取互联网上的信息的技术。爬虫可以自动访问网页并提取所需的数据&#xff0c;比…...

设计模式之组合设计模式

一、组合设计模式概念 组合模式 (Component) 是一种结构型设计模式&#xff0c;将对象组合成树形结构以表示“部分-整体”的层次结构。 组合模式使得用户对单个对象和组合对象的使用具有唯一性。 适用场景 想要表示对象的部分-整体层次结构。想要客户端忽略组合对象与单个对象的…...

Java汽车销售管理

技术架构&#xff1a; springboot mybatis Mysql5.7 vue2 npm node 有需要该项目的小伙伴可以添加我Q&#xff1a;598748873&#xff0c;备注&#xff1a;CSDN 功能描述&#xff1a; 针对汽车销售提供客户信息、车辆信息、订单信息、销售人员管理、财务报表等功能&…...

js TypeError: Cannot read property ‘initialize’ of undefined

js TypeError: Cannot read property ‘initialize’ of undefined 在JavaScript开发旅程中&#xff0c;遇到TypeError: Cannot read property ‘initialize’ of undefined这样的错误提示&#xff0c;无疑是令人沮丧的。这个错误通常意味着你试图访问一个未定义对象的initiali…...

【Motion Forecasting】【摘要阅读】BANet: Motion Forecasting with Boundary Aware Network

BANet: Motion Forecasting with Boundary Aware Network 这项工作发布于2022年&#xff0c;作者团队来自于OPPO。这项工作一直被放在arxiv上&#xff0c;并没有被正式发表&#xff0c;所提出的方法BANet在2022年达到了Argoverse 2 test dataset上的SOTA水准。 Method BANet…...

Cpp快速入门语法(下)(2)

文章目录 前言一、函数重载概念与使用C为何支持函数重载&#xff1f; 二、引用概念语法特性权限(常引用)使用场景与指针的区别 三、内联函数四、auto关键字(C11)五、基于范围的for循环(C11)六、指针空值nullptr(C11)总结 前言 承前启后&#xff0c;正文开始&#xff01; 一、函…...

【GO开发】MacOS上搭建GO的基础环境-Hello World

文章目录 一、引言二、安装Go语言三、配置环境变量&#xff08;可跳过&#xff09;四、Hello World五、总结 一、引言 Go语言&#xff08;Golang&#xff09;因其简洁、高效、并发性强等特点&#xff0c;受到了越来越多开发者的喜爱。本文将带你一步步在Mac操作系统上搭建Go语…...

探索轻量级语言模型 GPT-4O-mini 的无限可能

随着人工智能技术的日益发展&#xff0c;语言模型正逐渐成为人们日常生活和工作中不可或缺的一部分。其中&#xff0c;GPT-4O-mini 作为一个轻量级大模型&#xff0c;以其强大的功能和易用性吸引了众多关注。本文将带您了解 GPT-4O-mini 的出色表现、应用场景以及如何免费使用这…...

CSS 笔记 1

1. CSS 优先级&#xff0c; 内部大于外部。 2. 几个属性&#xff1a; flex-grow: 1; 让 当前元素 在剩余空间中&#xff0c; 占据尽可能多的高度&#xff0c;确保它能在中间居中。 max-height: 300px; 限制最大高度 300 像素&#xff0c; flex-grow: 1; 导致占的太满了&#x…...

2024/9/16 dataloader、tensorboard、transform

一、pytorch两大法宝元素 假设有一个名为pytorch的包 dir()&#xff1a;用于打开包&#xff0c;看里面的内容 help():用于查看具体的内容的用处 二、python文件&#xff0c;python控制台和jupyter的使用对比 三、pytorch读取数据 pytorch读取数据主要涉及到两个类&#xff1…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...