【有啥问啥】弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法

弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法
引言
在视觉大模型领域,如何有效利用海量无标签图像数据是一个亟待解决的问题。传统的深度学习模型依赖大量人工标注数据,而获取高质量的标注数据成本高昂,且覆盖面有限。因此,如何通过弱监督学习来降低对标注数据的依赖,提升视觉模型的泛化能力和语义理解能力,是当前研究的热点之一。
格灵深瞳提出的多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法,提供了一种创新且有效的解决方案。MLCD通过聚类技术和多标签分类相结合的方式,在无需大量人工标注的情况下,提升了模型的语义理解能力和性能。这一方法在弱监督学习的背景下,通过利用海量的无标签数据,充分挖掘图像中的语义信息,使得视觉模型在多任务场景下表现出更好的性能。
MLCD方法详解
MLCD的核心思想在于:通过聚类将相似的图像分组,并为每个图像分配多个软标签,从而模拟多标签分类场景,训练出具备更强语义理解能力的视觉模型。
1. 特征聚类
- 特征提取:MLCD首先使用预训练网络(如ResNet等)提取图像的特征向量。这些特征向量表示图像的高层次抽象信息,可以有效地表示图像的内容。
- 初始聚类:接下来,MLCD使用特征聚类算法(如K-means、GMM等)将图像数据集划分为若干簇。每个簇可以看作是一个初步的类别,代表一类相似的图像。
- 多标签辅助:与传统的单标签聚类不同,MLCD引入多标签机制,为每个图像分配多个聚类中心的软标签。这意味着一个图像可以同时属于多个簇,例如一张图像可能包含“猫”和“狗”等多个语义信息。
2. 软标签分配
- 概率分配:MLCD为每个图像生成一个软标签向量,向量中的每个元素代表图像属于某一类的概率。这些概率值是基于图像与各个聚类中心之间的距离计算得出的。
- 软标签优势:相比于硬标签(即图像只能属于单个类别),软标签允许图像同时属于多个类别,并且不同类别的权重有所区别。这种方式更真实地反映了图像中的复杂语义结构。
3. 多标签分类损失函数
-
定制化损失函数:MLCD引入了一种定制化的多标签分类损失函数,鼓励模型在多标签场景下正确预测多个相关标签,同时抑制不相关标签。损失函数基于交叉熵,并加入正则化项来防止过拟合。
例如,损失函数可表示为:
L = − ∑ i = 1 N ∑ j = 1 M y i j log ( p i j ) + λ ∑ i = 1 N ∣ ∣ θ i ∣ ∣ 2 L = -\sum_{i=1}^{N}\sum_{j=1}^{M} y_{ij} \log(p_{ij}) + \lambda \sum_{i=1}^{N} ||\theta_i||^2 L=−i=1∑Nj=1∑Myijlog(pij)+λi=1∑N∣∣θi∣∣2
其中, y i j y_{ij} yij 是第 i i i 张图像在第 j j j 类的真实标签, p i j p_{ij} pij 是模型预测的概率, λ \lambda λ 是正则化参数, θ i \theta_i θi 是模型的权重参数。该公式通过惩罚错误分类的预测概率,并对模型权重加以约束,来提高模型的泛化能力。
-
损失函数优化:通过优化该损失函数,MLCD能够有效学习到具有更强判别力的特征,从而提高图像分类和识别的准确率。
举个栗子
假设我们在处理一个智能相册应用,它能够自动识别和分类照片中的物体。
1. 特征提取与聚类原理
假设你有一个包含大量照片的相册,这些照片中有各种各样的物体,比如猫、狗、汽车、风景等等。首先,MLCD方法会从这些照片中提取出特征,就像我们用放大镜观察每张照片的细节。提取的特征包含了图片的高层次信息,比如“这张图片看起来有很多猫的特征”或者“这张图片像是城市风景”。
接着,MLCD会对这些特征进行聚类。例如,将相似特征的照片分成一个组。比如,所有包含猫的照片被分到一个组,所有包含狗的照片被分到另一个组。这就像是我们将照片按主题归档。
2. 软标签分配原理
但是,有时候一张照片可能同时包含多个物体。比如,一张照片中既有猫也有狗。传统的分类方法可能只能选择一个标签,比如“猫”或“狗”。但MLCD方法使用软标签,允许每张照片同时有多个标签。对于那张同时有猫和狗的照片,MLCD可能会给它分配两个标签:“猫”和“狗”,每个标签还会有一个“权重”,表示这个标签的重要程度。例如,“猫”标签的权重是0.7,“狗”标签的权重是0.3。
3. 多标签分类损失函数原理
在训练过程中,MLCD方法会使用一个特别的“损失函数”来优化模型。这个损失函数就像是一个教练,它会对模型的预测结果进行评分,并给出改进建议。比如,如果模型预测一张猫狗混合的照片只有“猫”而没有“狗”,损失函数就会给模型一个“错误分数”,并鼓励它改进预测,以便在未来更准确地识别这些照片。
4. 实验小结
通过这样的训练,MLCD方法可以让模型在实际应用中表现更好。比如,当你使用智能相册时,它不仅能够准确地识别出照片中的猫和狗,还能识别出城市风景、海滩等背景内容,并将它们归类到相应的标签下。
5. 应用场景
- 图像分类:你可以在智能相册中搜索“猫”和“狗”的照片,MLCD方法能帮助你找到包含这两种动物的所有照片。
- 目标检测:如果你用这套技术进行视频监控,MLCD可以帮助你检测到视频中的多个物体,如同时识别并标记出行人和车辆。
- 图像生成:在图像生成任务中,MLCD方法能让生成的图片更加符合实际场景中的复杂语义,比如在合成一张包含多种元素的图片时,能够更好地融合这些元素。
总之,MLCD方法就像一个聪明的分类助手,它不仅能识别照片中的单一物体,还能同时处理多个物体,提升了图像处理的智能化水平。
实验与结果
在ImageNet等大型数据集上的实验表明,MLCD方法相比于传统的弱监督学习方法在图像分类、目标检测等任务上均取得了显著的性能提升。
实验设置
- 数据集:ImageNet, COCO等数据集
- 模型架构:使用ResNet50作为预训练模型
- 超参数设置:学习率0.001, batch size 256, 聚类中心数目为1000
性能对比
在ImageNet上的实验结果如下:
| 方法 | Top-1 准确率 | Top-5 准确率 |
|---|---|---|
| 传统方法 | 76.5% | 93.2% |
| MLCD | 79.4% | 94.7% |
通过引入软标签和多标签分类机制,MLCD能够更好地捕捉图像中的复杂语义信息,从而在分类任务中表现优异。
MLCD的优势
- 充分利用无标签数据:MLCD能够有效地利用大量无标签数据,极大降低了对标注数据的依赖。这使得在大规模数据集上训练模型成为可能,同时避免了人工标注的高昂成本。
- 增强语义理解:通过特征聚类和软标签分配,MLCD能够为图像注入丰富的语义信息,增强了模型对图像内容的理解能力。这使得模型不仅可以识别单一物体,还能同时识别图像中的多个语义。
- 提升模型性能:MLCD在多个视觉任务上取得了显著性能提升,例如在ImageNet等大规模数据集上的图像分类精度显著优于传统方法。同时,它也可以作为预训练模型的增强手段,进一步提升在目标检测等任务中的表现。
MLCD的局限性
尽管MLCD表现出色,但其仍存在一些局限性:
- 对噪声数据的敏感度:MLCD方法在面对含有噪声数据的图像时,可能会出现聚类中心分布不均或标签分配错误的情况,从而影响最终分类效果。
- 计算复杂度:由于聚类过程涉及大量的特征比较和计算,MLCD在大规模数据集上的计算复杂度较高,可能需要较强的计算资源支持。
MLCD的应用场景
- 图像分类:MLCD能够实现多标签图像分类,例如一张图像可以同时被标记为“猫”、“狗”和“室内场景”。
- 目标检测:MLCD可以用于目标检测任务的预训练阶段,帮助检测器识别出多类物体并提高精度。
- 图像生成:在图像生成任务中,MLCD通过注入丰富的语义信息,能够生成更加语义一致的图像。
实际应用案例
例如,在智能视频监控领域,MLCD方法可以有效地识别多个类别的物体,如同时检测出车辆、行人和交通标志,从而为交通管理提供精准的决策支持。
总结
格灵深瞳提出的MLCD方法,为弱监督学习提供了全新的解决方案。通过结合聚类技术和多标签分类,MLCD有效利用了海量无标签数据,增强了视觉模型的语义理解能力。这一方法在多个视觉任务上展现了出色的性能,具有广阔的应用前景。
未来展望
- 更复杂的聚类算法:可以进一步探索如层次聚类、密度聚类等算法,提升聚类效果。
- 传送门链接: 关于聚类算法(Clustering):你想要了解的都在这里
- 多模态学习:将MLCD扩展到多模态学习领域,结合文本、音频等信息,提升模型的理解能力。
- 自监督学习:MLCD可以与自监督学习结合,借助自监督预训练的强大泛化能力,进一步提升模型在弱监督场景下的表现。
- 传送门链接: 机器学习中的自监督学习与无监督学习是什么意思?
相关文章:
【有啥问啥】弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法
弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法 引言 在视觉大模型领域,如何有效利用海量无标签图像数据是一个亟待解决的问题。传统的深度学习模型依赖大量人工标注数据&…...
[强化你的LangChain工具创建技能:从基础到进阶]
强化你的LangChain工具创建技能:从基础到进阶 在现代AI开发中,为语言模型和智能代理提供工具是提升其功能的关键一步。本指南将带你深入了解如何在LangChain中创建工具,从简单的函数到复杂的可配置工具。 引言 在构建智能代理时࿰…...
4.提升客户服务体验:ChatGPT在客服中的应用(4/10)
本文大纲旨在指导撰写一篇全面探讨ChatGPT如何通过优化客户服务流程、提供实际应用案例和用户反馈,以提升客户服务体验的深入博客文章。 引言 在当今竞争激烈的商业环境中,客户服务已成为企业成功的关键因素。优质的客户服务不仅能够增强客户满意度和忠…...
Gradio导入AIGC大模型创建web端智能体聊天机器人,python(2)
Gradio导入AIGC大模型创建web端智能体聊天机器人,python(2) 选用这个大模型: https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instructhttps://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct原因是该模型相对比较小&am…...
PEM 格式
文章目录 1.简介2.格式和内容3.常见用途4.标准化5.示例参考文献 1.简介 .pem 文件扩展名代表“Privacy Enhanced Mail”,但它被用于比电子邮件更广泛的上下文中,主要关联于加密、SSL/TLS 和证书管理。PEM 格式是一种用于存储和发送加密信息的标准&#…...
Android前台服务如何在后台启动activity?
本来最近在开发一个app保活另外一个app的功能,方案介绍如下: 应用A 启动一个前台服务保活自己应用A 用grpc连接应用B(服务端)是否存活如果发现B不存活,则在服务中拉起B 这次没有做好调研,直接开始了开发工作,等grpc都…...
c#visionpro开发 方法统计
toolblock开发 vpp第二种简单加载方式 public Cognex.VisionPro.ToolBlock.CogToolBlock ToolBlock1;//初始化后实例化一个方法 //窗口运行程序内部 ToolBlock1 (CogToolBlock)CogSerializer.LoadObjectFromFile(“tjjc.vpp”); MessageBox.Show(“算法加载成功”);//复制一个…...
dedecms——四种webshell姿势
姿势一:通过文件管理器上传WebShell 步骤一:访问目标靶场其思路为 dedecms 后台可以直接上传任意文件,可以通过文件管理器上传php文件获取webshell 步骤二:登陆到后台点击【核心】--》 【文件式管理器】--》 【文件上传】将准备好…...
GO GIN 推荐的库
在使用 Go 和 Gin 框架进行 Web 开发时,有许多第三方库可以增强功能和提高开发效率。以下是一些常用的、与 Gin 搭配使用的库: 1. 数据处理与验证 go-playground/validator 用于结构体字段的验证,Gin 默认已经集成了它。它提供了丰富的验证…...
YOLOv9改进策略【卷积层】| GnConv:一种通过门控卷积和递归设计来实现高效、可扩展、平移等变的高阶空间交互操作
一、本文介绍 本文记录的是利用GnConv优化YOLOv9的目标检测方法研究。YOLOv9在进行目标检测时,需要对不同层次的特征进行融合。GnConv可以考虑更高阶的空间交互,能够更好地捕捉特征之间的复杂关系,从而增强特征融合的效果,提高模…...
如何在Linux下升级R版本和RStudio
一、升级R版本 在Linux上,R的安装通常通过包管理器完成。不同的Linux发行版(如Ubuntu、Debian、Fedora等)可能略有不同。下面以Ubuntu为例,介绍如何升级R版本。如果你使用其他发行版,步骤可能类似。 二.更新步骤 2.…...
npm安装时候报错certificate has expired
打开了一个很久没用的电脑,npm和node都装好了,安装包的时候一直报错 request to https://registry.npm.taobao.org/create-react-app failed, reason: certificate has expired而且先报错rollbackFailedOptional 然而npm没什么问题,是ssl过…...
CSP-J_S第一轮复习资料1·计算机硬件
下一章...
oracle 表的外键
表的外键 3.5.1表之间的三种关系 在数据库设计中,工作中经常会分析商业逻辑中的表的设计。在设计表的关系之前,需要先了解关系型数据库特点。关系数据库有如下特点: 关系型数据库采用了关系模型来组织数据的数据库。 关系型数据库的最大特点…...
加密与安全_优雅存储二要素(AES-256-GCM )
文章目录 什么是二要素如何保护二要素(姓名和身份证)加密算法分类场景选择算法选择AES - ECB 模式 (不推荐)AES - CBC 模式 (推荐)GCM(Galois/Counter Mode)AES-256-GCM简介AES-256-GCM工作原理安全优势 应用场景其他模式 和 敏感…...
【C++高阶】解锁C++的深层魅力——探索特殊类的奥秘
📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C “ 登神长阶 ” 🤡往期回顾🤡:C 类型转换 🌹🌹期待您的关注 🌹🌹 ❀C特殊类 📒1. 不能被拷贝…...
Vue学习记录之三(ref全家桶)
ref、reactive是在 setup() 声明组件内部状态用的, 这些变量通常都要 return 出去,除了供 < template > 或渲染函数渲染视图,也可以作为 props 或 emit 参数 在组件间传递。它们的值变更可触发页面渲染。 ref :是一个函数&…...
第二十六篇——九地篇:九种形势的应对之道
目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么? 四、总结五、升华 一、背景介绍 地势的维度重新阐述了懂得人心的重要性,道久其归一为为别人。…...
学习记录:js算法(三十七): 搜索二维矩阵
文章目录 搜索二维矩阵我的思路网上思路 总结 搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵: ● 每行中的整数从左到右按非严格递增顺序排列。 ● 每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中&a…...
拥控算法BBR入门1
拥塞控制算法只与本地有关 一个TCP会话使用的拥塞控制算法只与本地有关。 两个TCP系统可以在TCP会话的两端使用不同的拥塞控制算法 Bottleneck Bandwidth and Round-trip time Bottleneck 瓶颈 BBR models the network to send as fast as the available bandwidth and is 2…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
