当前位置: 首页 > news >正文

孙怡带你深度学习(2)--PyTorch框架认识

文章目录

  • PyTorch框架认识
    • 1. Tensor张量
      • 定义与特性
      • 创建方式
    • 2. 下载数据集
      • 下载测试
      • 展现下载内容
    • 3. 创建DataLoader(数据加载器)
    • 4. 选择处理器
    • 5. 神经网络模型
      • 构建模型
    • 6. 训练数据
      • 训练集数据
      • 测试集数据
    • 7. 提高模型学习率
  • 总结

PyTorch框架认识

PyTorch是一个由Facebook人工智能研究院(FAIR)在2016年发布的开源深度学习框架,专为GPU加速的深度神经网络(DNN)编程而设计。它以其简洁、灵活和符合Python风格的特点,在科研和工业生产中得到了广泛应用。

1. Tensor张量

在PyTorch中,张量(Tensor)是核心数据结构,它是一个多维数组,用于存储和变换数据。张量类似于Numpy中的数组,但具有更丰富的功能和灵活性,特别是在支持GPU加速方面。

定义与特性

  • 多维数组:张量可以看作是一个n维数组,其中n可以是任意正整数。它可以是标量(零维数组)、向量(一维数组)、矩阵(二维数组)或具有更高维度的数组。
  • 数据类型统一:张量中的元素具有相同的数据类型,这有助于在GPU上进行高效的并行计算。
  • 支持GPU加速:PyTorch中的张量可以存储在CPU或GPU上,通过将张量转移到GPU上,可以利用GPU的强大计算能力来加速深度学习模型的训练和推理过程。

创建方式

  • 直接使用torch.tensor():根据提供的Python列表或Numpy数组创建张量。
  • 下载数据集时:transform=ToTensor()直接将数据转化为Tensor张量类型。

2. 下载数据集

在PyTorch中,有许多封装了很多与图像相关的模型、数据集,那么如何获取数据集呢?

导入datasets模块

from torchvision import datasets #封装了很多与图像相关的模型,数据集

以datasets模块中的MNIST数据集为例,包含70000张手写数字图像:60000张用于训练,10000张用于测试。图像是灰度的,28*28像素,并且居中的,以减少预处理和加快运行。

下载测试

我们来下载MNIST数据集

from torchvision.transforms import ToTensor # 数据转换,张量,将其他类型数据转换为tensor张量
"""-----下载训练集数据集-----"""
training_data = datasets.MNIST(root="data",train=True,# 取训练集download=True,transform=ToTensor(),# 张量,图片是不能直接传入神经网络模型的
) # 对于pytorch库能够识别的数据,一般是tensor张量"""-----下载测试集数据集-----"""
test_data = datasets.MNIST(root="data",train=False,download=True,transform=ToTensor(),
)# numpy数组只能在CPU上运行,Tensor可以在GPU上运行,这在深度学习中可以显著提高计算速度

在这里插入图片描述

下载完成之后可在project栏查看。

展现下载内容

我们来查看部分图片(第59000张到第59009张):

"""-----展现手写字图片-----"""
# tensor -->numpy  矩阵类型数据
from matplotlib import pyplot as plt
figure = plt.figure() # 创建一个新的图形
for i in range(9):img,label = training_data[i+59000] #提取第59000张图片figure.add_subplot(3,3,i+1) #图像窗口中创建多个小窗口,小窗口用于显示图片plt.title(label)plt.axis("off")# 关闭当前轴的坐标轴plt.imshow(img.squeeze(),cmap="gray")a = img.squeeze()# squeeze()从张量img中去掉维度为1的。如果该维度不为1则张量不会改变
plt.show()

图片信息获取时,得到的张量数据类型是这样的:

在这里插入图片描述

我们通过squeeze()函数,去掉维度为1的。这样我们就可以得到图片的高宽大小,将它展现出来:

在这里插入图片描述

3. 创建DataLoader(数据加载器)

在PyTorch中,创建DataLoader的主要作用是将数据集(Dataset)加载到模型中,以便进行训练或推理。DataLoader通过封装数据集,提供了一个高效、灵活的方式来处理数据。

DataLoader通过batch_size参数将数据集自动划分为多个小批次(batch),每一批次的放入模型训练,减少内存的使用,提高训练速度。

import torch
from torch.utils.data import DataLoader
"""
创建数据DataLoader(数据加载器)
batch_size:将数据集分成多份,每一份为batch_size(指定数值)个数据。
优点:减少内存的使用,提高训练速度
"""
train_dataloder = DataLoader(training_data,batch_size=64)# 64张图片为一个包
test_datalodar = DataLoader(test_data,batch_size=64)
# 查看打包好的数据
for x,y in test_datalodar: #x是表示打包好的每一个数据包print(f"Shape of x [N, C, H, W]:{x.shape}")print(f"Shape of y:{y.shape} {y.dtype}")break
-----------------------
Shape of x [N, C, H, W]:torch.Size([64, 1, 28, 28])
Shape of y:torch.Size([64]) torch.int64

4. 选择处理器

我们知道,电脑中的处理器有CPU和GPU两种,CPU擅长执行复杂的指令和逻辑操作,而GPU则擅长处理大量并行计算任务。

所以,在可以的条件下,我们选择使用GPU处理器来学习深度学习,因为计算量比较大:

"""---判断当前设备是否支持GPU,其中mps是苹果m系列芯片的GPU"""
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using {device} device")
----------------
Using cuda device

5. 神经网络模型

通过调用类的形式来使用神经网络,神经网络的模型:nn.module。

构建模型

我们在构建时,得明确神经网络模型的结构:输入层–隐藏层–输出层,而在每一个隐藏层进入下一层时,都会有一个激活函数计算,所以我们也按着这个架构层次定义函数:

class NeuralNetwork(nn.Module): #通过调用类的形式来使用神经网络,神经网络的模型:nn.moduledef __init__(self): # self类自己本身super().__init__() #继承的父类初始化self.flatten = nn.Flatten()# 输入层,展开一个对象flattenself.hidden1 = nn.Linear(28*28,256)# 隐藏层,第1个参数:有多少神经元传入进来;第二个参数,有多少数据传出去self.hidden2 = nn.Linear(256,128)self.hidden3 = nn.Linear(128,64)self.hidden4 = nn.Linear(64,32)self.out = nn.Linear(32,10)#输出层,输出必须与类别数量相同,输入必须是上一层的个数def forward(self,x): #前向传播(该名字不要轻易改),告诉它数据的流向x = self.flatten(x)x = self.hidden1(x)x = torch.sigmoid(x) #激活函数x = self.hidden2(x)x = torch.sigmoid(x)x = self.hidden3(x)x = torch.sigmoid(x)x = self.hidden4(x)x = torch.sigmoid(x)x = self.out(x)return x
model = NeuralNetwork().to(device) #将刚刚创建的模型传入到GPU
print(model)
-----------------------
NeuralNetwork((flatten): Flatten(start_dim=1, end_dim=-1)(hidden1): Linear(in_features=784, out_features=256, bias=True)(hidden2): Linear(in_features=256, out_features=128, bias=True)(hidden3): Linear(in_features=128, out_features=64, bias=True)(hidden4): Linear(in_features=64, out_features=32, bias=True)(out): Linear(in_features=32, out_features=10, bias=True)
)

6. 训练数据

训练数据时,需要注意的参数:

  • optimizer优化器

在PyTorch中,创建Optimizer的主要作用是管理并更新模型中可学习参数(即权重和偏置)的值,以便最小化某个损失函数(loss function)。

  1. 梯度清零:在每次迭代开始时,Optimizer会调用**.zero_grad()**方法来清除之前累积的梯度,这是因为在PyTorch中,梯度是累加的,如果不清零,则下一次的梯度计算会包含前一次的梯度,导致错误的更新。
  2. 梯度计算:在模型进行前向传播(forward pass)和损失计算之后,Optimizer并不直接参与梯度的计算。梯度的计算是通过调用损失函数的**.backward()**方法完成的,该方法会计算损失函数关于模型中所有可学习参数的梯度,并将这些梯度存储在相应的参数对象中。
  3. 参数更新:在梯度计算完成后,Optimizer会调用**.step()**方法来根据计算得到的梯度以及选择的优化算法(如SGD、Adam等)来更新模型的参数。这一步骤是优化过程中最关键的部分,它决定了模型学习的方向和速度。
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
  • loss_fn损失函数

在PyTorch中,**nn.CrossEntropyLoss()**是一个常用的损失函数,它结合了 nn.LogSoftmax()nn.NLLLoss()(负对数似然损失)在一个单独的类中。

loss_fn = nn.CrossEntropyLoss()

训练集数据

from torch import nn #导入神经网络模块
def train(dataloader,model,loss_fn,optimizer):model.train()# 设置模型为训练模式batch_size_num =1# 迭代次数 for x,y in dataloader:x,y = x.to(device),y.to(device)  # 将数据和标签发送到指定设备  pred = model.forward(x)  # 前向传播  loss = loss_fn(pred,y)  # 计算损失  optimizer.zero_grad()  # 清除之前的梯度  loss.backward()  # 反向传播  optimizer.step()  # 更新模型参数  loss_value = loss.item()  # 获取损失值if batch_size_num %200 == 0:  # 每200次迭代打印一次损失  print(f"loss:{loss_value:>7f} [number:{batch_size_num}]")batch_size_num += 1
------------------------
loss:1.039446 [number:200]
loss:0.754774 [number:400]
loss:0.553383 [number:600]
loss:0.573400 [number:800]

测试集数据

def test(dataloader,model,loss_fn):size = len(dataloader.dataset) # 获取测试集的总大小。num_batches = len(dataloader) # 计算数据加载器中的批次数量。model.eval() # 将模型设置为评估模式。test_loss,correct = 0,0 # 初始化总损失和正确预测的数量。with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1) == y)b = (pred.argmax(1) == y).type(torch.float)test_loss /= num_batchescorrect /= sizecorrect = round(correct, 4)print(f"Test result: \n Accuracy:{(100*correct)}%,Avg loss:{test_loss}")---------------------
Test result: Accuracy:89.96%,Avg loss:0.36642977581092506

我们可以看到,这个模型的正确率不是特别的高,那么接下来我们来提高模型的学习率。

7. 提高模型学习率

遍历了指定的训练周期(epochs)数,并在每个周期中调用 train 函数来训练模型。

"""-----调整学习率-----"""
epochs = 10
for t in range(epochs):print(f"Epoch {t+1} \n-------------------------")train(train_dataloder,model,loss_fn,optimizer)
print("Done!")
test(test_datalodar,model,loss_fn)
---------------
仅展示优化后的结果:
Test result: Accuracy:97.33000000000001%,Avg loss:0.10455594740913303

总结

本篇介绍了:

  1. PyTorch的框架
  2. 数据类型张量,数据集的获取
  3. 如何构建对应神经网络的模型
  4. 如何优化算法:一、修改optimizer优化器的算法;二、遍历合适的训练周期(epochs)数

相关文章:

孙怡带你深度学习(2)--PyTorch框架认识

文章目录 PyTorch框架认识1. Tensor张量定义与特性创建方式 2. 下载数据集下载测试展现下载内容 3. 创建DataLoader(数据加载器)4. 选择处理器5. 神经网络模型构建模型 6. 训练数据训练集数据测试集数据 7. 提高模型学习率 总结 PyTorch框架认识 PyTorc…...

如何在Android上实现RTSP服务器

技术背景 在Android上实现RTSP服务器确实是一个不太常见的需求,因为Android平台主要是为客户端应用设计的。在一些内网场景下,我们更希望把安卓终端或开发板,作为一个IPC(网络摄像机)一样,对外提供个拉流的…...

代理导致的git错误

问题: 今天在clone时出现如下错误: fatal: unable to access https://github.com/NirDiamant/RAG_Techniques.git/: Failed to connect to 127.0.0.1 port 10089 after 2065 ms: Couldnt connect to server真是让人感到奇怪!就在前天&#…...

Ready Go

本文首发在这里 温馨提示 XX年,指的是20XX年,后跟以前、以后之类,均包含本数链接较多,只是想言之有物,已拒绝相同外链,仅看关心的即可已尽量只引用自己的东西,16年后仓库(11/13),2…...

Matlab simulink建模与仿真 第十三章(信号通路库)

参考视频:simulink1.1simulink简介_哔哩哔哩_bilibili 一、信号通路库中的模块概览 1、信号通路组 注:部分模块在第二章中有介绍,本章不再赘述。 2、信号存储和访问组 二、总线分配模块 Bus Assignment模块接受总线作为输入,并…...

Java中接口和抽象类的区别(语法层面的区别、设计理念层面的区别)

文章目录 1. 语法层面的区别1.1 成员属性1.2 成员方法1.3 关系 2. 设计理念层面的区别(重点)3. 举例理解抽象类和接口在设计理念层面的区别3.1 例一:门和警报3.2 例二:招聘3.3 例三:装修房子 4. 总结 1. 语法层面的区别…...

Leetcode面试经典150题-20.有效的括号

给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应的相同类型的左括…...

Git常用指令大全详解

Git常用指令大全详解 Git,作为目前最流行的分布式版本控制系统,其强大的功能和灵活性为开发者提供了极大的便利。无论是个人项目还是团队协作,Git都扮演着不可或缺的角色。本文将详细总结Git的常用指令,帮助大家更好地掌握这一工…...

面试真题-TCP的三次握手

TCP的基础知识 TCP头部 面试题:TCP的头部是多大? TCP(传输控制协议)的头部通常是固定的20个字节长,但是根据TCP选项(Options)的不同,这个长度可以扩展。TCP头部包含了许多关键的字…...

LabVIEW多语言支持优化

遇到的LabVIEW多语言支持问题,特别是德文显示乱码以及系统区域设置导致的异常,可能是由编码问题或区域设置不匹配引起的。以下是一些可能的原因及解决方案: 问题原因: 编码问题:LabVIEW内部使用UTF-8编码,但…...

身份证阅读器API模式 VUE Dorado7

VUE 新框架 // 身份证扫描 readIdCard(type) {// 1.连接axios.get(http://localhost:19196/openDevice).then(res > {if (res.data.resultFlag 0) {// 2.读卡axios.get(http://localhost:19196/readCard).then((res) > {if (res.data.resultFlag 0) {// this.$message…...

北京通州自闭症学校推荐:打造和谐学习氛围,助力孩子成长

在北京通州,寻找一所能够全面关注自闭症儿童成长、提供高效康复服务的学校,星贝育园无疑是众多家庭的首选。作为全国知名的广泛性发育障碍全托寄宿制儿童康复训练机构,星贝育园以其专业的康复方法、强大的师资力量和贴心的服务,为…...

openstack之cinder介绍

概念 cinder 为虚拟机提供管理块存储服务。支持的文件系统:lvm、iscsi、nfs、san、RBD 组件构成及功能介绍 cinder api:在控制节点运行,管理服务的接口,被命令行、其他组件调用; cinder scheduler:类似n…...

第k个排列 - 华为OD统一考试(E卷)

2024华为OD机试(E卷D卷C卷)最新题库【超值优惠】Java/Python/C合集 题目描述 给定参数n,从1到n会有n个整数:1,2,3,.,n,这n个数字共有 n!种排列。按大小顺序升序列出所有排列情况,并-一标记,当n3时,所有排列…...

清理C盘缓存,电脑缓存清理怎么一键删除,操作简单的教程

清理C盘缓存是维护电脑性能、释放磁盘空间的重要步骤。以下是一个详细且操作简单的教程,旨在帮助用户通过一键或几步操作完成C盘缓存的清理。 1.使用Windows系统自带工具 磁盘清理 1.打开磁盘清理工具: -按下“WinE”打开文件资源管理器…...

网络安全-ssrf

目录 一、环境 二、漏洞讲解 三、靶场讲解 四、可利用协议 4.1 dict协议 4.2 file协议 4.3 gopher协议 五、看一道ctf题吧(长亭的比赛) 5.1环境 5.2开始测试 ​编辑 一、环境 pikachu,这里我直接docker拉取的,我只写原…...

c++刷题

17.电话号码的组合 来源于题解思路&#xff1a; 继承 CC14 KiKi设计类继承 #include <iostream> #include <memory> using namespace std; class Shape{ private:int x;int y; };class Rectangle:public Shape { public:Rectangle(int length,int width):Shape…...

艾丽卡的区块链英语小课堂

系列文章目录 复习昨日 文章目录 系列文章目录前言1.opaque2.deduplicates3.references4,intermix5.serializing6.streamline7.robust8.flexibility9.exotic10.nevertheless11. realize12.flavor13.subtract14.attach15.award 前言 欢迎来到艾丽卡的区块链英语小课堂&#x…...

计算机毕业设计 公寓出租系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…...

eclipse使用 笔记02

创建一个项目&#xff1a; 【File-->New-->Dynamic Web Project】 进入页面&#xff1a; Project name为项目命名 Target runtime&#xff1a;选择自己所对应的版本 finish创建成功&#xff1a; 创建成功后的删除操作&#xff1a; 创建前端界面&#xff1a; 【注意&a…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...