论文阅读笔记 --- 图模互补:知识图谱与大模型融合综述 --- 按参考文献整理
- Large Language Models’ Understanding of Math: Source Criticism and Extrapolation
- Submitted on 12 Nov 2023
- 大模型在处理结构化推理方面(如解决数学问题[99])表现不佳
- Tree of Thoughts: Deliberate Problem Solving with Large Language Models
- Submitted on 17 May 2023 (v1), last revised 3 Dec 2023 (this version, v2)
- https://github.com/princeton-nlp/tree-of-thought-llm
- 思维树(ToT)
- Graph of Thoughts: Solving Elaborate Problems with Large Language Models
- Submitted on 18 Aug 2023 (v1), last revised 6 Feb 2024 (this version, v4)
- https://github.com/spcl/graph-of-thoughts
- 思维图(GoT)
- CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study
- Submitted on 21 Jul 2023
- 思维链是一种通过少样本示例提示来增强大型模型推理任务的方法,它能够通过生成中间推理步骤执行复杂的推理,例如CohortGPT[102]采用链式思维采样策略辅佐领域知识图增强大模型在医学领域推理能力。
- Language Models Don’t Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting
- Submitted on 7 May 2023 (v1), last revised 9 Dec 2023 (this version, v2)
- https://github.com/milesaturpin/cot-unfaithfulness
- 然而,思维链模型在使用偏见特征时可能会导致推理结果受到影响[103],改变其原本的方向。
- JointLK: Joint Reasoning with Language Models and Knowledge Graphs for Commonsense Question Answering
- Submitted on 6 Dec 2021 (this version), latest version 2 May 2022 (v2)
- https://github.com/yueqing-sun/jointlk
- JointLK模型则是在QA-GNN模型上的优化,由于QA-GNN仅将QA上下文作为一个额外节点附加到知识图,无法完成双向交互。而JointLK通过密集的双向注意力模块实现语言模型和知识图谱的多步联合推理。具体来说,JointLK模型将任务文本信息与外部知识图谱数据这两种不同模态的信息结合起来,设计了一个联合推理模块,在每个问题标记和每个知识图谱节点之间生成细粒度的双向注意映射,实现不同模态信息的融合。同时,JointLK模型设计了一个动态图裁剪模块,通过移除无关的图节点进行去噪,以确保模型正确地使用完整和适当的证据进行推理。实验结果表明,JointLK在解决带有否定词的复杂推理问题方面表现出色。
- QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering
- Submitted on 13 Apr 2021 (v1), last revised 13 Dec 2022 (this version, v5)
- JointLK[104]和QA-GNN[105]则采用图神经网络(GNN)和知识图谱来提高模型推理能力。相较于以往文本与知识独立的模式,QA-GNN将问题上下文与检索到的知识连接起来,构成一个联合图。
- RoBERTa: A Robustly Optimized BERT Pretraining Approach
- Submitted on 26 Jul 2019
- https://github.com/facebookresearch/fairseq
- 实验表明,相较于比RoBERTa[106],QA-GNN表现出更好的效果。
- Deep Bidirectional Language-Knowledge Graph Pretraining
- Submitted on 17 Oct 2022 (v1), last revised 19 Oct 2022 (this version, v2)
- https://github.com/michiyasunaga/dragon
- DRAGON[107]模型在文本和知识图的深度双向联合(QA-GNN)的基础上,采用自监督学习策略。通过统一两个自我监督的推理任务,包括掩码语言建模(MLM)和链接预测,DRAGON模型实现了对文本和知识图的全面预训练。这种自监督学习策略使得模型能够更好地理解文本和知识图之间的关系,从而更准确地进行推理。
相关文章:
论文阅读笔记 --- 图模互补:知识图谱与大模型融合综述 --- 按参考文献整理
Large Language Models’ Understanding of Math: Source Criticism and Extrapolation Submitted on 12 Nov 2023大模型在处理结构化推理方面(如解决数学问题[99])表现不佳 Tree of Thoughts: Deliberate Problem Solving with Large Language Models S…...
Cpp类和对象(上)(3)
文章目录 前言一、面向过程与面向对象初步认识二、类的引入三、类的定义四、类的访问限定符及类的封装类的访问限定符类的封装 五、类的作用域(类域)六、类的实例化七、类对象模型如何计算类对象的大小类对象的存储方式猜测 八、this指针this指针的引出this指针的特性 九、C语言…...
【微信小程序】连续拍照功能实现
前言: 最近在使用uniapp开发微信小程序,遇到这样一个需求,用户想要连续拍照,拍完之后可以删除照片,保留自己想要的照片,然后上传到服务器上。由于原生的方法只能一个个拍照上传,所以只能自己通过…...
JavaSE:11、内部类
学习 资源1 学习资源 2 1、成员内部类 import com.test.*;public class Main {public static void main(String [] argv){Person personnew Person();//Person构造函数Person.Woman womanperson.new Woman();//woman构造函数} }package com.test;public class Person {publ…...
VTD激光雷达(7)——07_OptiX_Variables_Advanced
文章目录 前言一、总结 前言 一、 1 和上图蓝绿的区别在于 总结...
运维工程师面试整理-自动化运维
自动化运维是现代运维工作中不可或缺的一部分,它可以大幅提升效率,减少人为错误,并使得大规模环境管理变得可行。在面试中,面试官通常会通过自动化运维相关的问题来评估你在自动化工具使用、脚本编写、CI/CD 实践以及系统监控等方面的能力。以下是关于自动化运维的详细内容…...
【JAVA基础】实现Tomcat基本功能
文章目录 TCP/IP协议Socket编程ServletTomcat 在搜索了两三天之后,也是大概弄懂了Tomcat是个什么东西,我们在说Tomcat之前,先来了解一下下面这三个东西: TCP/IP协议 TCP/IP 是互联网通信的基础协议。TCP(传输控制协议…...
风力发电叶片缺陷检测数据集
风力发电叶片缺陷检测数据集】nc: 4 names: [Burn Mark, Coating_defects, Crack, EROSION ] 名称:【烧伤痕迹, 涂层缺陷, 裂缝,侵蚀】共1095张,8:1:1比例划分,(train;876张,val:109张ÿ…...
数据类型自动转换的解决方案
数据类型自动转换的解决方案 java8、jdk8背景 为方便测试框架数据处理以及方便查看一些数据,弄了一个工具类,部分要点简要说明。 主要涉及到字符串与其他类型的相互转换,无其他类型之间的相互转换。 轻量测试框架实现与使用的总篇可见此文…...
大厂校招:唯品会Java面试题及参考答案
SortedSet 的原理 SortedSet 是一个有序的集合接口,它继承自 Set 接口。在 Java 中,常见的实现类有 TreeSet。 TreeSet 实现了 SortedSet 接口,它使用红黑树来维护集合中元素的有序性。红黑树是一种自平衡的二叉搜索树,具有以下特点: 每个节点要么是红色,要么是黑色。根节…...
Qt常用控件——QLCDNumber
文章目录 QLCDNumber核心属性倒计时小程序倒计时小程序相关问题 QLCDNumber核心属性 QLCDNumber是专门用来显示数字的控件,类似于这样: 属性说明intValue获取的数字值(int).value获取的数字值(double)和intValue是联动的例如value设为1.5,in…...
专业学习|GERT网络概览(学习资源、原理介绍、变体介绍)
一、GERT 网络概览 GERT(Graphical Evaluation Review Technique,图示评审技术)是一种结合流线图理论(Flow Graphical Theory)、矩母函数(Moment Generating Function)、计划评审技术(Program Evaluation Review Technique)解决随机网络问题的方法,描述各…...
搭建一个基于角色的权限验证框架
说明:基于角色的权限验证(Role-Based Access Control,RBAC)框架,是目前大多数服务端的登录校验框架。本文介绍如何快速搭建一个这样的框架,不用Shiro、Spring Security、Sa-Token这样的“大框架”实现。 R…...
下载chromedriver驱动
首先进入关于ChromeDriver最新下载地址:Chrome for Testing availability 进入之后找到与自己所匹配的,在浏览器中查看版本号,下载版本号需要一致。 下载即可,解压,找到 直接放在pycharm下即可 因为在环境变量中早已配…...
在STM32工程中使用Mavlink与飞控通信
本文讲述如何在STM32工程中使用Mavlink协议与飞控通信,特别适合自制飞控外设模块的项目。 需求来源: 1、增稳云台里的STM32单片机需要通过串口接收飞控传来的云台俯仰、横滚控制指令和相机拍照控制指令; 2、自制的有害气体采集器需要接收飞…...
【Elasticsearch】-7.17.24版本接入
官网 https://www.elastic.co/cn/downloads/elasticsearch 本项目基于windows环境下,其他环境操作类似 1、初始化配置 打开config/elasticsearch.yaml 添加如下配置 cluster.name: dams_clusternetwork.host: 127.0.0.1 http.port: 9200# 不开启geo数据库 inge…...
ShouldSniffAttr在自动化测试中具体是如何应用?
在自动化测试中,ShouldSniffAttr 这样的函数名通常暗示它是一个用于断言(assertions)的工具,用于检查某个元素或属性是否符合预期的条件。 虽然这不是一个标准的函数名,但我们可以根据命名推测其用途。 例如…...
前端vue3打印,多页打印,不使用插件(工作中让我写一个打印功能)
说下总体思路,创建一个组件,里面放多个span字段,然后根据父组件传入的参数,生成子组件,最好我们打印子组件的信息即可。通过我多次ai,探索最后成功了。 子组件代码 media print 这个我要讲一下ÿ…...
传感技术是如何实现实时监测和控制的呢
传感技术在力士乐拧紧系统中实现实时监测和控制的方式主要通过以下几个步骤进行: 一、传感器数据采集 1. 传感器种类: 力士乐拧紧系统中可能包含多种传感器,如力矩传感器、角度传感器和转速传感器等。这些传感器各自负责检测拧紧过程中的不…...
为什么mac打不开rar文件 苹果电脑打不开rar压缩文件怎么办
你是否遇到过这样的情况,下载了一个rar文件,想要查看里面的内容,却发现Mac电脑无法打开。rar文件是一种常见的压缩文件格式,它可以将多个文件或文件夹压缩成一个文件,节省空间和传输时间。如此高效实用的压缩文档&…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
