当前位置: 首页 > news >正文

YoloV10改进策略:Block改进|PromptIR(NIPS‘2023)|轻量高效,即插即用|(适用于分类、分割、检测等多种场景)

文章目录

  • 摘要
  • 代码详解
  • 如何在自己的论文中描述
  • 改进方法
  • 测试结果
  • 总结

摘要

本文使用PromptIR框架中的PGM模块来改进YoloV10。PGM(Prompt Generation Module)模块是PromptIR框架中的一个重要组成部分,主要负责生成输入条件化的提示(prompts)。这些提示是一组可学习的参数,它们与输入特征相互作用,以嵌入有关各种类型图像退化的信息。
在这里插入图片描述

PGM模块的核心功能是动态地从输入特征中预测基于注意力的权重,并将这些权重应用于提示组件以产生输入条件化的提示P。具体来说,PGM首先对输入特征进行全局平均池化操作,以生成一个特征向量v。然后,这个特征向量通过一个通道降采样卷积层,获得一个紧凑的特征向量,接着执行softmax操作,得到提示组件的权重w。最后,使用这些权重来调整提示组件,并通过一个3×3的卷积层来输出最终的提示P。
在这里插入图片描述

此外,为了使提示组件能够在不同分辨率的输入图像上工作,PGM还会对提示组件进行上采样操作&

相关文章:

YoloV10改进策略:Block改进|PromptIR(NIPS‘2023)|轻量高效,即插即用|(适用于分类、分割、检测等多种场景)

文章目录 摘要代码详解如何在自己的论文中描述改进方法测试结果总结摘要 本文使用PromptIR框架中的PGM模块来改进YoloV10。PGM(Prompt Generation Module)模块是PromptIR框架中的一个重要组成部分,主要负责生成输入条件化的提示(prompts)。这些提示是一组可学习的参数,它…...

使用rust自制操作系统内核

一、系统简介 本操作系统是一个使用rust语言实现,基于32位的x86CPU的分时操作系统。 项目地址(求star):GitHub - CaoGaorong/os-in-rust: 使用rust实现一个操作系统内核 详细文档:自制操作系统 语雀 1. 项目特性 …...

Flink难点和高阶面试题:Flink的状态管理机制如何保证数据处理的准确性和完整性

1 Flink状态管理机制核心要素 1.1 内置状态后端 在Apache Flink中,状态管理机制是确保数据处理准确性与完整性的关键环节。其核心在于灵活且高效的状态后端,这些后端负责在分布式环境中安全地存储和访问状态数据。Flink提供了多种内置状态后端,其中RocksDB和内存状态后端最…...

【激励广告带来的广告收入与用户留存率的双重提升】

激励广告带来的广告收入与用户留存率的双重提升 ) 随着移动应用市场的竞争加剧,如何通过广告变现成为众多开发者关注的焦点。其中,激励广告(Rewarded Ads)凭借其用户友好、互动性强等特点,逐渐成为开发者的首选。那些…...

指针和引用;内联函数和普通函数

1. 指针和引用 1.1 定义和性质区别 指针是一个变量,只不过这个变量存储的是一个地址,指向内存的一个存储单元;而引用跟原来的变量实质上是同一个东西,只不过是原变量的一个别名而已。可以有const指针,常量指针可以改…...

简单题67.二进制求和 (java)20240919

题目描述: Java: class Solution {public String addBinary(String a, String b) {StringBuilder result new StringBuilder();int i a.length()-1;int j b.length()-1;int carry 0; //记录进位信息while(i>0 || j>0 || carry!0){int sum ca…...

DDD的主要流程

DDD 开发流程分为模型的建立和模型的实现两大部分,接下来是具体的流程讲解以及流程图。 1. 模型的建立 捕获行为需求:在这一阶段,团队要识别系统中需要完成的任务、操作流程、功能需求以及每个功能由谁操作、会产生什么结果。我们可以通过 …...

linux驱动开发-设备树

设备树的历史背景 背景: 在早期的嵌入式系统中,硬件配置信息通常硬编码在内核源码中,这导致了内核代码的冗长和难以维护。 为了解决这个问题,设备树(Device Tree)被引入,使得硬件描述与内核代…...

数据结构——二叉树堆的专题

1.堆的概念及结构 如果有一个关键码的集合K {K0 &#xff0c;K1 &#xff0c;K2 &#xff0c;K3…&#xff0c;K(N-1) }&#xff0c;把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中&#xff0c;并满足&#xff1a;Ki < K2*i1且 Ki<K2*i2 ) i 0&#…...

【C语言零基础入门篇 - 7】:拆解函数的奥秘:定义、声明、变量,传递须知,嵌套玩转,递归惊艳

文章目录 函数函数的定义与声明局部变量和全局变量、静态变量静态变量和动态变量函数的值传递函数参数的地址传值 函数的嵌套使用函数的递归调用 函数 函数的定义与声明 函数的概念&#xff1a;函数是C语言项目的基本组成单位。实现一个功能可以封装一个函数来实现。定义函数的…...

ClickHouse在AI领域的结合应用

文章目录 引言1.1 人工智能与大数据的融合1.2 ClickHouse在大数据平台中的地位2.1 BI与AI的融合从传统BI到智能BIAI赋能BI融合的优势实际应用案例 2.2 异构数据处理的重要性数据多样性的挑战异构数据处理的需求技术实现实际应用案例 2.3 向量检索与AIOps技术向量检索的背景AIOp…...

git push出错Push cannot contain secrets

报错原因&#xff1a; 因为你的代码里面包含了github token明文信息&#xff0c;github担心你的token会泄漏&#xff0c;所以就不允许你推送这些内容。 解决办法&#xff1a; 需要先把代码里面的github token信息删除掉&#xff0c;并且删掉之前的历史提交&#xff0c;只要包…...

OpenAI 的最强模型 o1 的“护城河”失守?谷歌 DeepMind 早已揭示相同原理

发布不到一周&#xff0c;OpenAI 的最新模型 o1 的“护城河”似乎已经失守。 近日&#xff0c;有人发现谷歌 DeepMind 早在今年 8 月发表的一篇论文&#xff0c;揭示了与 o1 模型极其相似的工作原理。 这项研究指出&#xff0c;在模型推理过程中增加测试时的计算量&#xff0c…...

【胡乱念叨】大模型的“我”

下面的内容很有可能事实错误&#xff0c;胡说八道&#xff0c;前后不连贯&#xff0c;举例随意且未经考证 甚至 有意欺骗&#xff01;嘻嘻。所以是【胡乱念叨】 文章目录 【胡乱念叨】大模型的“我”参数量和“我”什么是“我”从输入输出的观点看“我”大模型的“我”乱讨论 …...

Flag_AGtivity_clear_top网页编程指南如何退出多activity程序

activity的启动模式:FLAG_ACTIVITY_CLEAR_TOP和FLAG_ACTIVITY_REORDER_TO_FRONT。 1. 如果已经启动了四个Activity&#xff1a;A&#xff0c;B&#xff0c;C和D。在D Activity里&#xff0c;我们要跳到B Activity&#xff0c;同时希望C finish掉&#xff0c;可以在start…...

克隆centos网卡uuid相同如何修改

在克隆CentOS系统后&#xff0c;网卡的UUID相同会导致网络配置冲突&#xff0c;使得网络无法正常工作。要解决这个问题&#xff0c;你需要为每个克隆的系统生成新的UUID。 以下是解决步骤&#xff1a; 进入原始CentOS系统。 找到网络配置文件的位置&#xff0c;通常在 /etc/s…...

C语言习题~day11

1、C程序常见的错误分类不包含&#xff1a;&#xff08; &#xff09; A.编译错误 B.链接错误 C.栈溢出 D.运行时错误 栈溢出是运行时错误的一种&#xff0c;因此C程序不会将栈溢出错误单独列出来&#xff0c;栈溢出包含在运行时错误中。 因此&#xff1a;选择C 2、关于VS调…...

Ansible——Playbook基本功能???

文章目录 一、Ansible Playbook介绍1、Playbook的简单组成1&#xff09;“play”2&#xff09;“task”3&#xff09;“playbook” 2、Playbook与ad-hoc简单对比区别联系 3、YAML文件语法&#xff1a;---以及多个---&#xff1f;&#xff1f;使用 include 指令 1. 基本结构2. 数…...

多线程学习篇一:启动多线程的三种方式

1. 继承 Thread 类 Slf4j public class MyThread extends Thread {Overridepublic void run() {log.info("MyThread run ...");}public static void main(String[] args) {MyThread myThread new MyThread();myThread.start();} } 2. 实现 Runnable 接口 Slf4j pu…...

【专题】2024跨境出海供应链洞察-更先进供应链报告合集PDF分享(附原数据表)

原文链接&#xff1a;https://tecdat.cn/?p37665 当前&#xff0c;全球化商业浪潮促使跨境电商行业飞速发展&#xff0c;产业带与跨境电商接轨、平台半托管模式涌现、社交电商带来红利机会以及海外仓不断扩张&#xff0c;这使得产业带外贸工厂、内贸工厂、传统进出口企业和品…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...