Qwen 2.5:阿里巴巴集团的新一代大型语言模型

Qwen 2.5:阿里巴巴集团的新一代大型语言模型
摘要:
在人工智能领域,大型语言模型(LLMs)的发展日新月异,它们在自然语言处理(NLP)和多模态任务中扮演着越来越重要的角色。阿里巴巴集团的Qwen团队最近推出了Qwen 2.5,这是其大语言模型系列的最新升级。本文将综述Qwen 2.5的主要特点、技术进步以及它在多模态交互和语言理解方面的应用潜力。
-
引言 随着人工智能技术的不断进步,大型语言模型已经成为推动自然语言处理领域发展的关键力量。Qwen 2.5的发布标志着阿里巴巴集团在这一领域的最新进展,它不仅在语言理解方面取得了显著提升,还在文本生成、视觉理解、音频理解等多个方面展现了卓越的能力。
-
Qwen 2.5的主要特点 Qwen 2.5是阿里巴巴集团Qwen团队研发的新一代大型语言模型,它在以下方面展现了显著的特点和进步:
- 参数规模:Qwen 2.5提供了从0.5B到72B不同参数规模的模型,以满足不同应用场景的需求。
- 预训练数据:模型在包含18万亿tokens的大规模多语言和多模态数据集上进行预训练,确保了其在多样化数据上的强大表现。
- 指令遵循与文本生成:Qwen 2.5在遵循指令和生成长文本方面的能力得到了显著提升,能够理解和生成结构化数据,如表格和JSON格式的输出。
- 角色扮演与聊天机器人:模型增强了角色扮演的实现和聊天机器人的背景设置,使其在交互式应用中更加自然和适应性强。
- 上下文长度:支持长达128K tokens的上下文长度,并能生成最多8K tokens的文本,这为处理长文本提供了可能。
- 多语言支持:Qwen 2.5支持超过29种语言,包括中文、英文、法文、西班牙文等,使其具有广泛的国际适用性。
-
技术进步 Qwen 2.5的技术进步体现在以下几个方面:
- 仅解码器稠密语言模型:Qwen 2.5采用了易于使用的仅解码器架构,提供了基模型和指令微调模型两种变体。
- 预训练与微调:模型在高质量数据上进行后期微调,以贴近人类偏好,这在提升模型性能方面起到了关键作用。
- 结构化数据理解:Qwen 2.5在理解结构化数据方面取得了显著进步,这对于处理表格、数据库和其他结构化信息尤为重要。
- 应用潜力 Qwen 2.5的多模态能力和语言理解能力使其在以下领域具有广泛的应用潜力:
- 客户服务:作为聊天机器人,Qwen 2.5能够提供更加自然和准确的客户服务体验。
- 内容创作:在文本生成方面,Qwen 2.5能够帮助用户快速生成高质量的内容。
- 数据分析:Qwen 2.5的理解结构化数据的能力使其在数据分析和信息提取方面具有巨大潜力。
- 教育和研究:Qwen 2.5的多语言支持为教育和研究提供了强大的工具,尤其是在语言学习和跨文化交流方面。
2. 代码使用
from transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "Qwen/Qwen2.5-7B-Instruct"model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype="auto",device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)prompt = "Give me a short introduction to large language model."
messages = [{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)generated_ids = model.generate(**model_inputs,max_new_tokens=512
)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
参考文献:
- Qwen官方文档:Qwen
- 代码: GitHub - QwenLM/Qwen2.5: Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.
相关文章:
Qwen 2.5:阿里巴巴集团的新一代大型语言模型
Qwen 2.5:阿里巴巴集团的新一代大型语言模型 摘要: 在人工智能领域,大型语言模型(LLMs)的发展日新月异,它们在自然语言处理(NLP)和多模态任务中扮演着越来越重要的角色。阿里巴巴集…...
Element UI入门笔记(个人向)
Element UI入门笔记 将页面分割为一级菜单、二级菜单、导航栏三个部分;使用npm下载安装,使用语句npm i element-ui -s; 布局组件 el-form 用于创建和管理表单;从属性上看: :model:用于双向数据绑定,将表单…...
网络通信失败-关闭网络防火墙
0、报错描述1、分析2、解决办法 0、报错描述 在进行树莓派和PC端的网络通信的时候, 使用树莓派作为服务端,PC端作为客户端的时候,能成功通讯。 使用树莓派作为客户端,PC端作为服务端的时候,却发现通信失败。 体现在没…...
基于kolla-ansible在openEuler 22.03 SP4上部署OpenStack-2023.2
测试环境 openEuler-22.03-LTS-SP4-x86_64-dvd.iso Virtual Box,4 vCPU, 8G RAM, 50 vDisk。安装时删除/home,SWAP分区,全部空间给/目录。 目标是部署OpenStack All-In-One模式,控制节点计算节点存储节点在一台机器实现。 系统配…...
深拷贝|浅拷贝
目录 1. 深拷贝(Deep Copy) 2. 浅拷贝(Shallow Copy) 3. 深拷贝和浅拷贝的区别 4. 示例代码 浅拷贝示例 深拷贝示例 5.常用的方法 1.Java Object.clone() 方法 2.序列化与反序列化 6.Spring Boot 中的常用方法 使用 Se…...
图像处理-掩码
文章目录 一、简介二、主要用途三、代码实现四、掩码优缺点1.优点2.缺点 一、简介 在图像处理中,掩码(Mask)是一种特殊的图像,用于指定对原始图像进行操作的区域。掩码通常是二值图像(即图像上的每个像素只有两个可能…...
[2025]基于微信小程序慢性呼吸系统疾病的健康管理(源码+文档+解答)
博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…...
react之jsx基础(1)概念和本质
文章目录 JSX 的基本概念1. **语法**2. **表达式**3. **属性**4. **子元素** JSX 的编译过程1. **转换成 JavaScript**2. **React 元素** JSX 的实际应用1. **组件定义**2. **组件嵌套** 总结 当然,以下是对 JSX 的详细讲解,包括其基本概念、语法、编译过…...
sqli-labs靶场自动化利用工具——第13关
文章目录 概要整体架构流程技术细节执行效果小结 概要 Sqli-Labs靶场对于网安专业的学生或正在学习网安的朋友来说并不陌生,或者说已经很熟悉。那有没有朋友想过自己开发一个测试脚本能实现自动化化测试sqli-labs呢?可能有些人会说不是有sqlmap&#…...
大舍传媒:尼日利亚传统新闻媒体宣传助力新兴行业蓬勃发展
大舍传媒:尼日利亚传统新闻媒体宣传助力新兴行业蓬勃发展 在全球化的浪潮下,媒体作为信息传播的重要渠道,对于促进行业发展和推动社会进步扮演着举足轻重的角色。特别是在非洲大陆上人口最多、经济最发达的国家——尼日利亚,传统…...
ISSTA 2024盛大开幕:中国学者的录取数和投稿量均位列第一
随着夏日的尾声,全球软件测试领域的专家和学者齐聚在奥地利维也纳。共同参与这场科技盛宴——ISSTA 2024。这场国际会议正如火如荼地进行中,吸引了来自世界各地的专业人士参与。 会议实况: 9月16日与17日,大会安排了丰富的社交活…...
HttpMediaTypeNotAcceptableException: No acceptable representation问题解决方法
Background org.springframework.web.HttpMediaTypeNotAcceptableException: Could not find acceptable representation HttpMediaTypeNotAcceptableException: No acceptable representation 异常通常发生在Web应用程序中,客户端请求了一个资源,但是…...
Scrapy爬虫框架 Pipeline 数据传输管道
在网络数据采集领域,Scrapy 是一个非常强大的框架,而 Pipeline 是其中不可或缺的一部分。它允许我们在数据处理的最后阶段对抓取的数据进行进一步的处理,如清洗、存储等操作。 本教程将详细介绍如何在 Scrapy 中使用 Pipeline,帮…...
vim的 配置文件
vim 的配置文件名是vimrc,共有两个,一个是公共的、所有用户的vimrc,一个是私有的、个人的.vimrc。个人的配置文件是隐藏的,不进行配置的话一般是没有这个文件的,需要自己创建.vimrc 公共配置文件位于 :/etc/vim/vimrc…...
Golang | Leetcode Golang题解之第403题青蛙过河
题目: 题解: func canCross(stones []int) bool {n : len(stones)dp : make([][]bool, n)for i : range dp {dp[i] make([]bool, n)}dp[0][0] truefor i : 1; i < n; i {if stones[i]-stones[i-1] > i {return false}}for i : 1; i < n; i {…...
前端项目使用js将dom生成图片、PDF
在进行下方操作前,请你先安装 html2canvas 和 jspdf 包。 1、使用html2canvas将dom元素生成图片 // 获取要转换的dom const ele document.getElementById("dom"); // 生成canvas对象 let canvas await html2canvas(ele); 2、生成PDF对象,将…...
在 Red Hat 上安装 SQL Server 2022 并创建数据库
适用于: SQL Server - Linux 本快速入门介绍如何在 Red Hat Enterprise Linux (RHEL) 8.x 或 9.x 上安装 SQL Server 2022 (16.x)。然后可以使用 sqlcmd 进行连接,创建第一个数据库并运行查询。 注意:本教程需要用户输入和 Internet 连接。 …...
游戏如何应对云手机刷量问题
云手机的实现原理是依托公有云和 ARM 虚拟化技术,为用户在云端提供一个安卓实例,用户可以将手机上的应用上传至云端,再通过视频流的方式,远程实时控制云手机。 市面上常见的几款云手机 原本需要手机提供的计算、存储等能力都改由…...
QTableView使用QSortFilterProxyModel后行号错乱
在Qt中,当你使用QSortFilterProxyModel对QTableView进行排序或过滤后,点击事件可能会返回一个不正确的行号,因为代理模型可能会改变数据的显示顺序。为了获取点击数据的真实行号和内容,你可以使用mapToSource()函数,它…...
【Python】 报错Can‘t find model ‘en_core_web_md‘
出现这种错误表明Python环境中找不到名为en_core_web_md的模型。这通常发生在使用spaCy库进行自然语言处理时,因为spaCy依赖于预先训练好的模型来进行词性标注、依赖分析、命名实体识别等任务。如果没有安装该模型,尝试加载它时会导致错误。 解决办法&a…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
