当前位置: 首页 > news >正文

茴香豆:企业级知识问答工具实践闯关任务

基础任务

在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手,并使用 Gradio 界面完成 2 轮问答(问题不可与教程重复,作业截图需包括 gradio 界面问题和茴香豆回答)。知识库可根据根据自己工作、学习或感兴趣的内容调整,如金融、医疗、法律、音乐、动漫等(优秀学员必做)。

茴香豆本地标准版搭建

在第一部分中,我们利用 Web 版茴香豆实现了零代码开发部署一款 RAG 知识助手,在接下来的部分,我们要动手尝试将茴香豆从源码部署到本地服务器(以 InternlmStudio 为例),并开发一款简单的知识助手 Demo。

配置服务器

首先登录 InternStudio ,选择创建开发机:

镜像选择 Cuda11.7-conda ,资源类型选择 30% A\*100。输入开发机名称 huixiangdou, 点击立即创建。 

在 开发机 页面选择刚刚创建的个人开发机 huixiangdou,单击 启动: 

等服务器准备好开发机资源后,点击 进入开发机,继续进行开发环境的搭建。

 搭建茴香豆虚拟环境

命令行中输入一下命令,创建茴香豆专用 conda 环境:

studio-conda -o internlm-base -t huixiangdou

 创建成功,用下面的命令激活环境:

conda activate huixiangdou

环境激活成功后,命令行前的括号内会显示正在使用的环境,请确保所有茴香豆操作指令在 huixiangdou 环境下运行。

安装茴香豆

下面开始茴香豆本地标准版的安装。

 下载茴香豆

先从茴香豆仓库拉取代码到服务器:

cd /root
# 克隆代码仓库
git clone https://github.com/internlm/huixiangdou && cd huixiangdou
git checkout 79fa810

 拉取完成后进入茴香豆文件夹,开始安装。

安装茴香豆所需依赖

首先安装茴香豆所需依赖:

conda activate huixiangdou
# parsing `word` format requirements
apt update
apt install python-dev libxml2-dev libxslt1-dev antiword unrtf poppler-utils pstotext tesseract-ocr flac ffmpeg lame libmad0 libsox-fmt-mp3 sox libjpeg-dev swig libpulse-dev
# python requirements
pip install BCEmbedding==0.15 cmake==3.30.2 lit==18.1.8 sentencepiece==0.2.0 protobuf==5.27.3 accelerate==0.33.0
pip install -r requirements.txt
# python3.8 安装 faiss-gpu 而不是 faiss

下载模型文件

茴香豆默认会根据配置文件自动下载对应的模型文件,为了节省时间,本次教程所需的模型已经提前下载到服务器中,我们只需要为本次教程所需的模型建立软连接,然后在配置文件中设置相应路径就可以:

# 创建模型文件夹
cd /root && mkdir models# 复制BCE模型
ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 /root/models/bce-embedding-base_v1
ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 /root/models/bce-reranker-base_v1# 复制大模型参数(下面的模型,根据作业进度和任务进行**选择一个**就行)
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

完成后可以在相应目录下看到所需模型文件。

更改配置文件

茴香豆的所有功能开启和模型切换都可以通过 config.ini 文件进行修改,默认参数如下:

执行下面的命令更改配置文件,让茴香豆使用本地模型:

sed -i '9s#.*#embedding_model_path = "/root/models/bce-embedding-base_v1"#' /root/huixiangdou/config.ini
sed -i '15s#.*#reranker_model_path = "/root/models/bce-reranker-base_v1"#' /root/huixiangdou/config.ini
sed -i '43s#.*#local_llm_path = "/root/models/internlm2-chat-7b"#' /root/huixiangdou/config.ini

也可以用编辑器手动修改,文件位置为 /root/huixiangdou/config.ini

修改后的配置文件如下:

知识库创建

修改完配置文件后,就可以进行知识库的搭建,本次教程选用的是茴香豆和 MMPose 的文档,利用茴香豆搭建一个茴香豆和 MMPose 的知识问答助手。

conda activate huixiangdoucd /root/huixiangdou && mkdir repodirgit clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou
git clone https://github.com/open-mmlab/mmpose    --depth=1 repodir/mmpose# Save the features of repodir to workdir, and update the positive and negative example thresholds into `config.ini`
mkdir workdir
python3 -m huixiangdou.service.feature_store

在 huixiangdou 文件加下创建 repodir 文件夹,用来储存知识库原始文档。再创建一个文件夹 workdir 用来存放原始文档特征提取到的向量知识库。

知识库创建成功后会有一系列小测试,检验问题拒答和响应效果,如图所示,关于“mmpose 安装”的问题,测试结果可以很好的反馈相应答案和对应的参考文件,但关于“std::vector 使用”的问题,因为属于 C++ 范畴,不再在知识库范围内,测试结果显示拒答,说明我们的知识助手工作正常。

和 Web 版一样,本地版也可以通过编辑正反例来调整茴香豆的拒答和响应,正例位于 /root/huixiangdou/resource/good_questions.json 文件夹中,反例位于/root/huixiangdou/resource/bad_questions.json

需要注意的是,每次更新原始知识文档和正反例,都需要重新运行 python3 -m huixiangdou.service.feature_store 命令进行向量知识库的重新创建和应答阈值的更新。

配置中可见,在运行过一次特征提取后,茴香豆的阈值从 -1.0 更新到了 0.33。 配置文件中的 work_dir 参数指定了特征提取后向量知识库存放的位置。如果有多个知识库快速切换的需求,可以通过更改该参数实现。

测试知识助手

命令行运行

运行下面的命令,可以用命令行对现有知识库问答助手进行测试:

conda activate huixiangdou
cd /root/huixiangdou
python3 -m huixiangdou.main --standalone

通过命令行的方式可以看到对话的结果以及中间的过程,便于我们确认知识库是否覆盖需求,正反例是否合理。

Gradio UI 界面测试

茴香豆也用 gradio 搭建了一个 Web UI 的测试界面,用来测试本地茴香豆助手的效果。

本节课程中,茴香豆助手搭建在远程服务器上,因此需要先建立本地和服务器之间的透传,透传默认的端口为 7860,在本地机器命令行中运行如下命令:

ssh -CNg -L 7860:127.0.0.1:7860 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

在运行茴香豆助手的服务器端,输入下面的命令,启动茴香豆 Web UI:

conda activate huixiangdou
cd /root/huixiangdou
python3 -m huixiangdou.gradio

相关文章:

茴香豆:企业级知识问答工具实践闯关任务

基础任务 在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手&#xff0c;并使用 Gradio 界面完成 2 轮问答&#xff08;问题不可与教程重复&#xff0c;作业截图需包括 gradio 界面问题和茴香豆回答&#xff09;。知识库可根据根据自己工作、学习或感兴趣的内容调…...

英飞凌 PSoC6 RT-Thread 评估板简介

概述 2023年&#xff0c;英飞凌&#xff08;Infineon&#xff09;联合 RT-Thread 发布了一款 PSoC™ 62 with CAPSENSE™ evaluation kit 开发板 &#xff08;以下简称 PSoC 6 RTT 开发板&#xff09;&#xff0c;该开发套件默认内置 RT-Thread 物联网操作系统。PSoC 6 RTT 开…...

深度学习笔记(8)预训练模型

深度学习笔记&#xff08;8&#xff09;预训练模型 文章目录 深度学习笔记&#xff08;8&#xff09;预训练模型一、预训练模型构建一、微调模型&#xff0c;训练自己的数据1.导入数据集2.数据集处理方法3.完形填空训练 使用分词器将文本转换为模型的输入格式参数 return_tenso…...

C#事件的用法

前言 在C#中&#xff0c;事件&#xff08;Event&#xff09;可以实现当类内部发生某些特定的事情时&#xff0c;它可以通知其他类或对象。事件是基于委托&#xff08;Delegate&#xff09;的&#xff0c;委托是一种类型安全的函数指针&#xff0c;它定义了方法的类型&#xff…...

金砖软件测试赛项之Jmeter如何录制脚本!

一、简介 Apache JMeter 是一款开源的性能测试工具&#xff0c;用于测试各种服务的负载能力&#xff0c;包括Web应用、数据库、FTP服务器等。它可以模拟多种用户行为&#xff0c;生成负载以评估系统的性能和稳定性。 JMeter 的主要特点&#xff1a; 图形用户界面&#xff1a;…...

docker-squash镜像压缩

docker-squash 和 docker export docker load 的原理和效果有一些相似之处&#xff0c;但它们的工作方式和适用场景有所不同。 docker-squash docker-squash 是一个工具&#xff0c;它通过分析 Docker 镜像的层&#xff08;layers&#xff09;并将其压缩成更少的层来减小镜像…...

Vue3快速入门+axios的异步请求(基础使用)

学习Vue之前先要学习htmlcssjs的基础使用 Vue其实是js的框架 常用到的Vue指令包括vue-on,vue-for,vue-blind,vue-if&vue-show,v-modul vue的基础模板&#xff1a; <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8&…...

VM16安装macOS11

注意&#xff1a; 本文内容于 2024-09-17 12:08:24 创建&#xff0c;可能不会在此平台上进行更新。如果您希望查看最新版本或更多相关内容&#xff0c;请访问原文地址&#xff1a;VM16安装macOS11。感谢您的关注与支持&#xff01; 使用 Vmware Workstation Pro 16 安装 macOS…...

自定义复杂AntV/G6案例

一、效果图 二、源码 /** * * Author: me * CreatDate: 2024-08-22 * * Description: 复杂G6案例 * */ <template><div class"moreG6-wapper"><div id"graphContainer" ref"graphRef" class"graph-content"></d…...

Golang | Leetcode Golang题解之第419题棋盘上的战舰

题目&#xff1a; 题解&#xff1a; func countBattleships(board [][]byte) (ans int) {for i, row : range board {for j, ch : range row {if ch X && !(i > 0 && board[i-1][j] X || j > 0 && board[i][j-1] X) {ans}}}return }...

CCF刷题计划——LDAP(交集、并集 how to go)

LDAP 计算机软件能力认证考试系统 不知道为什么&#xff0c;直接给我报一个运行错误&#xff0c;得了0分。但是我在Dev里&#xff0c;VS里面都跑的好好的&#xff0c;奇奇怪怪。如果有大佬路过&#xff0c;请帮小弟看看QWQ。本题学到的&#xff1a;交集set_intersection、并集…...

谷歌论文提前揭示o1模型原理:AI大模型竞争或转向硬件

Open AI最强模型o1的护城河已经没有了&#xff1f;仅在OpenAI发布最新推理模型o1几日之后&#xff0c;海外社交平台 Reddit 上有网友发帖称谷歌Deepmind在 8 月发表的一篇论文内容与o1模型原理几乎一致&#xff0c;OpenAI的护城河不复存在。 谷歌DeepMind团队于今年8月6日发布…...

【ShuQiHere】 探索数据挖掘的世界:从概念到应用

&#x1f310; 【ShuQiHere】 数据挖掘&#xff08;Data Mining, DM&#xff09; 是一种从大型数据集中提取有用信息的技术&#xff0c;无论是在商业分析、金融预测&#xff0c;还是医学研究中&#xff0c;数据挖掘都扮演着至关重要的角色。本文将带您深入了解数据挖掘的核心概…...

LabVIEW提高开发效率技巧----使用事件结构优化用户界面响应

事件结构&#xff08;Event Structure&#xff09; 是 LabVIEW 中用于处理用户界面事件的强大工具。通过事件驱动的编程方式&#xff0c;程序可以在用户操作时动态执行特定代码&#xff0c;而不是通过轮询&#xff08;Polling&#xff09;的方式不断检查界面控件状态。这种方式…...

【前端】ES6:Set与Map

文章目录 1 Set结构1.1 初识Set1.2 实例的属性和方法1.3 遍历1.4 复杂数据结构去重 2 Map结构2.1 初识Map2.2 实例的属性和方法2.3 遍历 1 Set结构 它类似于数组&#xff0c;但成员的值都是唯一的&#xff0c;没有重复的值。 1.1 初识Set let s1 new Set([1, 2, 3, 2, 3]) …...

Java 之网络编程小案例

1. 多发多收 描述&#xff1a; 编写一个简单的聊天程序&#xff0c;客户端可以向服务器发送多条消息&#xff0c;服务器可以接收所有消息并回复。 代码示例&#xff1a; 服务器端 (Server.java): import java.io.*; import java.net.*; import java.util.concurrent.Execut…...

Spring Boot:现代化Java应用开发的艺术

目录 什么是Spring Boot&#xff1f; 为什么选择Spring Boot&#xff1f; Spring Boot的核心概念 详细步骤&#xff1a;创建一个Spring Boot应用 步骤1&#xff1a;使用Spring Initializr创建项目 步骤2&#xff1a;解压并导入项目 步骤3&#xff1a;构建和配置项目 po…...

Redis五种基本数据结构的使用

Redis具有五种基本数据类型&#xff1a;String(字符串)、Hash(哈希)、List(列表)、Set(集合)、SortedSet(有序集合)&#xff0c;下面示意它们的使用。 String类数据类型的使用 增&#xff1a;添加数据(set)、添加多个数据(mset)、添加数据时指定过期时间(setex) ​ 删&#xf…...

【QT】系统-下

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;QT 目录 &#x1f449;&#x1f3fb;QTheadrun() &#x1f449;&#x1f3fb;QMutex&#x1f449;&#x1f3fb;QWaitCondition&#x1f449;&#x1f3fb;Q…...

java和kotlin 可以同时运行吗

Java 和 Kotlin 可以同时运行在同一个项目中&#xff0c;这主要得益于 Kotlin 对 Java 的互操作性。Kotlin 被设计为与 Java 100% 兼容&#xff0c;这意味着 Kotlin 代码可以很容易地调用 Java 代码&#xff0c;反之亦然。这种设计使得 Kotlin 能够无缝集成到现有的 Java 项目中…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

Java设计模式:责任链模式

一、什么是责任链模式&#xff1f; 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09; 是一种 行为型设计模式&#xff0c;它通过将请求沿着一条处理链传递&#xff0c;直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者&#xff0c;…...