当前位置: 首页 > news >正文

最新动态一致的文生视频大模型FancyVideo部署

FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。

FancyVideo的创新之处在于它能够实现帧特定的文本指导,使得生成的视频既动态又具有一致性。

FancyVideo模型通过精心设计的跨帧文本引导模块(Cross-frame Textual Guidance Module, CTGM)改进了现有的文本控制机制,以解决现有文本到视频(T2V)模型在生成具有连贯运动视频时面临的挑战。

CTGM包含三个子模块:时间信息注入器(Temporal Information Injector, TII)、时间亲和力细化器(Temporal Affinity Refiner, TAR)和时间特征增强器(Temporal Feature Booster, TFB),分别在交叉注意的开始、中间和结束时实现帧特定文本指导。

FancyVideo在EvalCrafter基准测试上取得了最先进的T2V生成结果,并能够合成动态和一致的视频。

github项目地址:https://github.com/360CVGroup/FancyVideo。

一、环境安装

1、python环境

建议安装python版本在3.10以上。

2、pip库安装

pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 torchaudio==2.1.2 --extra-index-url https://download.pytorch.org/whl/cu118

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

3、fancyvideo模型下载

git lfs install

git clone https://huggingface.co/qihoo360/FancyVideo

4、stable-diffusion-v1-5模型下载

git lfs install

git clone https://huggingface.co/runwayml/stable-diffusion-v1-5

、功能测试

1、运行测试

(1)python代码调用测试

import os
import argparse
import torch
import yaml
from skimage import img_as_ubyte
from fancyvideo.pipelines.fancyvideo_infer_pipeline import InferPipelinedef load_config(config_path):with open(config_path, "r") as fp:return yaml.safe_load(fp)def load_prompts(prompt_path):with open(prompt_path, "r") as fp:return [line.strip() for line in fp.readlines()]def check_and_create_folder(folder_path):if not os.path.exists(folder_path):os.makedirs(folder_path, exist_ok=True)@torch.no_grad()
def process_prompt(infer_pipeline, prompt, reference_image_path, seed, video_length, resolution, use_noise_scheduler_snr, cond_fps, cond_motion_score, output_fps, dst_path):print(f"Processing prompt: {prompt}")reference_image, video, _ = infer_pipeline.t2v_process_one_prompt(prompt=prompt,reference_image_path=reference_image_path,seed=seed,video_length=video_length,resolution=resolution,use_noise_scheduler_snr=use_noise_scheduler_snr,fps=cond_fps,motion_score=cond_motion_score)frame_list = [img_as_ubyte(frame.cpu().permute(1, 2, 0).float().detach().numpy()) for frame in video]infer_pipeline.save_video(frame_list=frame_list, fps=output_fps, dst_path=dst_path)print(f"Saved video to: {dst_path}\n")@torch.no_grad()
def main(args):# Load configurationsconfig = load_config(args.config)model_config = config.get("model", {})infer_config = config.get("inference", {})# Initialize inference pipelineinfer_pipeline = InferPipeline(text_to_video_mm_path=model_config.get("text_to_video_mm_path"),base_model_path=model_config.get("base_model_path"),res_adapter_type=model_config.get("res_adapter_type"),trained_keys=model_config.get("trained_keys"),model_path=model_config.get("model_path"),vae_type=model_config.get("vae_type"),use_fps_embedding=model_config.get("use_fps_embedding"),use_motion_embedding=model_config.get("use_motion_embedding"),common_positive_prompt=model_config.get("common_positive_prompt"),common_negative_prompt=model_config.get("common_negative_prompt"),)# Prepare inference parametersinfer_mode = infer_config.get("infer_mode")resolution = infer_config.get("resolution")video_length = infer_config.get("video_length")output_fps = infer_config.get("output_fps")cond_fps = infer_config.get("cond_fps")cond_motion_score = infer_config.get("cond_motion_score")use_noise_scheduler_snr = infer_config.get("use_noise_scheduler_snr")seed = infer_config.get("seed")prompt_path = infer_config.get("prompt_path")reference_image_folder = infer_config.get("reference_image_folder")output_folder = infer_config.get("output_folder")check_and_create_folder(output_folder)# Load promptsprompts = load_prompts(prompt_path)# Process each promptfor i, prompt in enumerate(prompts):reference_image_path = f"{reference_image_folder}/{i}.png" if infer_mode == "i2v" else ""dst_path = f"{output_folder}/example_{i}.mp4"process_prompt(infer_pipeline, prompt, reference_image_path, seed, video_length, resolution, use_noise_scheduler_snr, cond_fps, cond_motion_score, output_fps, dst_path)if __name__ == "__main__":parser = argparse.ArgumentParser()parser.add_argument("--config", type=str, default="configs/inference/i2v.yaml", help="Path to the configuration file")args = parser.parse_args()main(args)

未完......

更多详细的欢迎关注:杰哥新技术

相关文章:

最新动态一致的文生视频大模型FancyVideo部署

FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。 FancyVideo的创新之处在于它能够实现帧特定的文本指导,使得生成的视频既动态又具有一致性。 FancyVideo模型通过精心设计的跨帧文本引导模块(Cross-frame Textual Guidance Modu…...

茴香豆:企业级知识问答工具实践闯关任务

基础任务 在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手,并使用 Gradio 界面完成 2 轮问答(问题不可与教程重复,作业截图需包括 gradio 界面问题和茴香豆回答)。知识库可根据根据自己工作、学习或感兴趣的内容调…...

英飞凌 PSoC6 RT-Thread 评估板简介

概述 2023年,英飞凌(Infineon)联合 RT-Thread 发布了一款 PSoC™ 62 with CAPSENSE™ evaluation kit 开发板 (以下简称 PSoC 6 RTT 开发板),该开发套件默认内置 RT-Thread 物联网操作系统。PSoC 6 RTT 开…...

深度学习笔记(8)预训练模型

深度学习笔记(8)预训练模型 文章目录 深度学习笔记(8)预训练模型一、预训练模型构建一、微调模型,训练自己的数据1.导入数据集2.数据集处理方法3.完形填空训练 使用分词器将文本转换为模型的输入格式参数 return_tenso…...

C#事件的用法

前言 在C#中,事件(Event)可以实现当类内部发生某些特定的事情时,它可以通知其他类或对象。事件是基于委托(Delegate)的,委托是一种类型安全的函数指针,它定义了方法的类型&#xff…...

金砖软件测试赛项之Jmeter如何录制脚本!

一、简介 Apache JMeter 是一款开源的性能测试工具,用于测试各种服务的负载能力,包括Web应用、数据库、FTP服务器等。它可以模拟多种用户行为,生成负载以评估系统的性能和稳定性。 JMeter 的主要特点: 图形用户界面:…...

docker-squash镜像压缩

docker-squash 和 docker export docker load 的原理和效果有一些相似之处,但它们的工作方式和适用场景有所不同。 docker-squash docker-squash 是一个工具,它通过分析 Docker 镜像的层(layers)并将其压缩成更少的层来减小镜像…...

Vue3快速入门+axios的异步请求(基础使用)

学习Vue之前先要学习htmlcssjs的基础使用 Vue其实是js的框架 常用到的Vue指令包括vue-on,vue-for,vue-blind,vue-if&vue-show,v-modul vue的基础模板&#xff1a; <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8&…...

VM16安装macOS11

注意&#xff1a; 本文内容于 2024-09-17 12:08:24 创建&#xff0c;可能不会在此平台上进行更新。如果您希望查看最新版本或更多相关内容&#xff0c;请访问原文地址&#xff1a;VM16安装macOS11。感谢您的关注与支持&#xff01; 使用 Vmware Workstation Pro 16 安装 macOS…...

自定义复杂AntV/G6案例

一、效果图 二、源码 /** * * Author: me * CreatDate: 2024-08-22 * * Description: 复杂G6案例 * */ <template><div class"moreG6-wapper"><div id"graphContainer" ref"graphRef" class"graph-content"></d…...

Golang | Leetcode Golang题解之第419题棋盘上的战舰

题目&#xff1a; 题解&#xff1a; func countBattleships(board [][]byte) (ans int) {for i, row : range board {for j, ch : range row {if ch X && !(i > 0 && board[i-1][j] X || j > 0 && board[i][j-1] X) {ans}}}return }...

CCF刷题计划——LDAP(交集、并集 how to go)

LDAP 计算机软件能力认证考试系统 不知道为什么&#xff0c;直接给我报一个运行错误&#xff0c;得了0分。但是我在Dev里&#xff0c;VS里面都跑的好好的&#xff0c;奇奇怪怪。如果有大佬路过&#xff0c;请帮小弟看看QWQ。本题学到的&#xff1a;交集set_intersection、并集…...

谷歌论文提前揭示o1模型原理:AI大模型竞争或转向硬件

Open AI最强模型o1的护城河已经没有了&#xff1f;仅在OpenAI发布最新推理模型o1几日之后&#xff0c;海外社交平台 Reddit 上有网友发帖称谷歌Deepmind在 8 月发表的一篇论文内容与o1模型原理几乎一致&#xff0c;OpenAI的护城河不复存在。 谷歌DeepMind团队于今年8月6日发布…...

【ShuQiHere】 探索数据挖掘的世界:从概念到应用

&#x1f310; 【ShuQiHere】 数据挖掘&#xff08;Data Mining, DM&#xff09; 是一种从大型数据集中提取有用信息的技术&#xff0c;无论是在商业分析、金融预测&#xff0c;还是医学研究中&#xff0c;数据挖掘都扮演着至关重要的角色。本文将带您深入了解数据挖掘的核心概…...

LabVIEW提高开发效率技巧----使用事件结构优化用户界面响应

事件结构&#xff08;Event Structure&#xff09; 是 LabVIEW 中用于处理用户界面事件的强大工具。通过事件驱动的编程方式&#xff0c;程序可以在用户操作时动态执行特定代码&#xff0c;而不是通过轮询&#xff08;Polling&#xff09;的方式不断检查界面控件状态。这种方式…...

【前端】ES6:Set与Map

文章目录 1 Set结构1.1 初识Set1.2 实例的属性和方法1.3 遍历1.4 复杂数据结构去重 2 Map结构2.1 初识Map2.2 实例的属性和方法2.3 遍历 1 Set结构 它类似于数组&#xff0c;但成员的值都是唯一的&#xff0c;没有重复的值。 1.1 初识Set let s1 new Set([1, 2, 3, 2, 3]) …...

Java 之网络编程小案例

1. 多发多收 描述&#xff1a; 编写一个简单的聊天程序&#xff0c;客户端可以向服务器发送多条消息&#xff0c;服务器可以接收所有消息并回复。 代码示例&#xff1a; 服务器端 (Server.java): import java.io.*; import java.net.*; import java.util.concurrent.Execut…...

Spring Boot:现代化Java应用开发的艺术

目录 什么是Spring Boot&#xff1f; 为什么选择Spring Boot&#xff1f; Spring Boot的核心概念 详细步骤&#xff1a;创建一个Spring Boot应用 步骤1&#xff1a;使用Spring Initializr创建项目 步骤2&#xff1a;解压并导入项目 步骤3&#xff1a;构建和配置项目 po…...

Redis五种基本数据结构的使用

Redis具有五种基本数据类型&#xff1a;String(字符串)、Hash(哈希)、List(列表)、Set(集合)、SortedSet(有序集合)&#xff0c;下面示意它们的使用。 String类数据类型的使用 增&#xff1a;添加数据(set)、添加多个数据(mset)、添加数据时指定过期时间(setex) ​ 删&#xf…...

【QT】系统-下

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;QT 目录 &#x1f449;&#x1f3fb;QTheadrun() &#x1f449;&#x1f3fb;QMutex&#x1f449;&#x1f3fb;QWaitCondition&#x1f449;&#x1f3fb;Q…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...