最新动态一致的文生视频大模型FancyVideo部署
FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。
FancyVideo的创新之处在于它能够实现帧特定的文本指导,使得生成的视频既动态又具有一致性。
FancyVideo模型通过精心设计的跨帧文本引导模块(Cross-frame Textual Guidance Module, CTGM)改进了现有的文本控制机制,以解决现有文本到视频(T2V)模型在生成具有连贯运动视频时面临的挑战。
CTGM包含三个子模块:时间信息注入器(Temporal Information Injector, TII)、时间亲和力细化器(Temporal Affinity Refiner, TAR)和时间特征增强器(Temporal Feature Booster, TFB),分别在交叉注意的开始、中间和结束时实现帧特定文本指导。
FancyVideo在EvalCrafter基准测试上取得了最先进的T2V生成结果,并能够合成动态和一致的视频。
github项目地址:https://github.com/360CVGroup/FancyVideo。
一、环境安装
1、python环境
建议安装python版本在3.10以上。
2、pip库安装
pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 torchaudio==2.1.2 --extra-index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
3、fancyvideo模型下载:
git lfs install
git clone https://huggingface.co/qihoo360/FancyVideo
4、stable-diffusion-v1-5模型下载:
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
二、功能测试
1、运行测试:
(1)python代码调用测试
import os
import argparse
import torch
import yaml
from skimage import img_as_ubyte
from fancyvideo.pipelines.fancyvideo_infer_pipeline import InferPipelinedef load_config(config_path):with open(config_path, "r") as fp:return yaml.safe_load(fp)def load_prompts(prompt_path):with open(prompt_path, "r") as fp:return [line.strip() for line in fp.readlines()]def check_and_create_folder(folder_path):if not os.path.exists(folder_path):os.makedirs(folder_path, exist_ok=True)@torch.no_grad()
def process_prompt(infer_pipeline, prompt, reference_image_path, seed, video_length, resolution, use_noise_scheduler_snr, cond_fps, cond_motion_score, output_fps, dst_path):print(f"Processing prompt: {prompt}")reference_image, video, _ = infer_pipeline.t2v_process_one_prompt(prompt=prompt,reference_image_path=reference_image_path,seed=seed,video_length=video_length,resolution=resolution,use_noise_scheduler_snr=use_noise_scheduler_snr,fps=cond_fps,motion_score=cond_motion_score)frame_list = [img_as_ubyte(frame.cpu().permute(1, 2, 0).float().detach().numpy()) for frame in video]infer_pipeline.save_video(frame_list=frame_list, fps=output_fps, dst_path=dst_path)print(f"Saved video to: {dst_path}\n")@torch.no_grad()
def main(args):# Load configurationsconfig = load_config(args.config)model_config = config.get("model", {})infer_config = config.get("inference", {})# Initialize inference pipelineinfer_pipeline = InferPipeline(text_to_video_mm_path=model_config.get("text_to_video_mm_path"),base_model_path=model_config.get("base_model_path"),res_adapter_type=model_config.get("res_adapter_type"),trained_keys=model_config.get("trained_keys"),model_path=model_config.get("model_path"),vae_type=model_config.get("vae_type"),use_fps_embedding=model_config.get("use_fps_embedding"),use_motion_embedding=model_config.get("use_motion_embedding"),common_positive_prompt=model_config.get("common_positive_prompt"),common_negative_prompt=model_config.get("common_negative_prompt"),)# Prepare inference parametersinfer_mode = infer_config.get("infer_mode")resolution = infer_config.get("resolution")video_length = infer_config.get("video_length")output_fps = infer_config.get("output_fps")cond_fps = infer_config.get("cond_fps")cond_motion_score = infer_config.get("cond_motion_score")use_noise_scheduler_snr = infer_config.get("use_noise_scheduler_snr")seed = infer_config.get("seed")prompt_path = infer_config.get("prompt_path")reference_image_folder = infer_config.get("reference_image_folder")output_folder = infer_config.get("output_folder")check_and_create_folder(output_folder)# Load promptsprompts = load_prompts(prompt_path)# Process each promptfor i, prompt in enumerate(prompts):reference_image_path = f"{reference_image_folder}/{i}.png" if infer_mode == "i2v" else ""dst_path = f"{output_folder}/example_{i}.mp4"process_prompt(infer_pipeline, prompt, reference_image_path, seed, video_length, resolution, use_noise_scheduler_snr, cond_fps, cond_motion_score, output_fps, dst_path)if __name__ == "__main__":parser = argparse.ArgumentParser()parser.add_argument("--config", type=str, default="configs/inference/i2v.yaml", help="Path to the configuration file")args = parser.parse_args()main(args)
未完......
更多详细的欢迎关注:杰哥新技术

相关文章:
最新动态一致的文生视频大模型FancyVideo部署
FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。 FancyVideo的创新之处在于它能够实现帧特定的文本指导,使得生成的视频既动态又具有一致性。 FancyVideo模型通过精心设计的跨帧文本引导模块(Cross-frame Textual Guidance Modu…...
茴香豆:企业级知识问答工具实践闯关任务
基础任务 在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手,并使用 Gradio 界面完成 2 轮问答(问题不可与教程重复,作业截图需包括 gradio 界面问题和茴香豆回答)。知识库可根据根据自己工作、学习或感兴趣的内容调…...
英飞凌 PSoC6 RT-Thread 评估板简介
概述 2023年,英飞凌(Infineon)联合 RT-Thread 发布了一款 PSoC™ 62 with CAPSENSE™ evaluation kit 开发板 (以下简称 PSoC 6 RTT 开发板),该开发套件默认内置 RT-Thread 物联网操作系统。PSoC 6 RTT 开…...
深度学习笔记(8)预训练模型
深度学习笔记(8)预训练模型 文章目录 深度学习笔记(8)预训练模型一、预训练模型构建一、微调模型,训练自己的数据1.导入数据集2.数据集处理方法3.完形填空训练 使用分词器将文本转换为模型的输入格式参数 return_tenso…...
C#事件的用法
前言 在C#中,事件(Event)可以实现当类内部发生某些特定的事情时,它可以通知其他类或对象。事件是基于委托(Delegate)的,委托是一种类型安全的函数指针,它定义了方法的类型ÿ…...
金砖软件测试赛项之Jmeter如何录制脚本!
一、简介 Apache JMeter 是一款开源的性能测试工具,用于测试各种服务的负载能力,包括Web应用、数据库、FTP服务器等。它可以模拟多种用户行为,生成负载以评估系统的性能和稳定性。 JMeter 的主要特点: 图形用户界面:…...
docker-squash镜像压缩
docker-squash 和 docker export docker load 的原理和效果有一些相似之处,但它们的工作方式和适用场景有所不同。 docker-squash docker-squash 是一个工具,它通过分析 Docker 镜像的层(layers)并将其压缩成更少的层来减小镜像…...
Vue3快速入门+axios的异步请求(基础使用)
学习Vue之前先要学习htmlcssjs的基础使用 Vue其实是js的框架 常用到的Vue指令包括vue-on,vue-for,vue-blind,vue-if&vue-show,v-modul vue的基础模板: <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8&…...
VM16安装macOS11
注意: 本文内容于 2024-09-17 12:08:24 创建,可能不会在此平台上进行更新。如果您希望查看最新版本或更多相关内容,请访问原文地址:VM16安装macOS11。感谢您的关注与支持! 使用 Vmware Workstation Pro 16 安装 macOS…...
自定义复杂AntV/G6案例
一、效果图 二、源码 /** * * Author: me * CreatDate: 2024-08-22 * * Description: 复杂G6案例 * */ <template><div class"moreG6-wapper"><div id"graphContainer" ref"graphRef" class"graph-content"></d…...
Golang | Leetcode Golang题解之第419题棋盘上的战舰
题目: 题解: func countBattleships(board [][]byte) (ans int) {for i, row : range board {for j, ch : range row {if ch X && !(i > 0 && board[i-1][j] X || j > 0 && board[i][j-1] X) {ans}}}return }...
CCF刷题计划——LDAP(交集、并集 how to go)
LDAP 计算机软件能力认证考试系统 不知道为什么,直接给我报一个运行错误,得了0分。但是我在Dev里,VS里面都跑的好好的,奇奇怪怪。如果有大佬路过,请帮小弟看看QWQ。本题学到的:交集set_intersection、并集…...
谷歌论文提前揭示o1模型原理:AI大模型竞争或转向硬件
Open AI最强模型o1的护城河已经没有了?仅在OpenAI发布最新推理模型o1几日之后,海外社交平台 Reddit 上有网友发帖称谷歌Deepmind在 8 月发表的一篇论文内容与o1模型原理几乎一致,OpenAI的护城河不复存在。 谷歌DeepMind团队于今年8月6日发布…...
【ShuQiHere】 探索数据挖掘的世界:从概念到应用
🌐 【ShuQiHere】 数据挖掘(Data Mining, DM) 是一种从大型数据集中提取有用信息的技术,无论是在商业分析、金融预测,还是医学研究中,数据挖掘都扮演着至关重要的角色。本文将带您深入了解数据挖掘的核心概…...
LabVIEW提高开发效率技巧----使用事件结构优化用户界面响应
事件结构(Event Structure) 是 LabVIEW 中用于处理用户界面事件的强大工具。通过事件驱动的编程方式,程序可以在用户操作时动态执行特定代码,而不是通过轮询(Polling)的方式不断检查界面控件状态。这种方式…...
【前端】ES6:Set与Map
文章目录 1 Set结构1.1 初识Set1.2 实例的属性和方法1.3 遍历1.4 复杂数据结构去重 2 Map结构2.1 初识Map2.2 实例的属性和方法2.3 遍历 1 Set结构 它类似于数组,但成员的值都是唯一的,没有重复的值。 1.1 初识Set let s1 new Set([1, 2, 3, 2, 3]) …...
Java 之网络编程小案例
1. 多发多收 描述: 编写一个简单的聊天程序,客户端可以向服务器发送多条消息,服务器可以接收所有消息并回复。 代码示例: 服务器端 (Server.java): import java.io.*; import java.net.*; import java.util.concurrent.Execut…...
Spring Boot:现代化Java应用开发的艺术
目录 什么是Spring Boot? 为什么选择Spring Boot? Spring Boot的核心概念 详细步骤:创建一个Spring Boot应用 步骤1:使用Spring Initializr创建项目 步骤2:解压并导入项目 步骤3:构建和配置项目 po…...
Redis五种基本数据结构的使用
Redis具有五种基本数据类型:String(字符串)、Hash(哈希)、List(列表)、Set(集合)、SortedSet(有序集合),下面示意它们的使用。 String类数据类型的使用 增:添加数据(set)、添加多个数据(mset)、添加数据时指定过期时间(setex) 删…...
【QT】系统-下
欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:QT 目录 👉🏻QTheadrun() 👉🏻QMutex👉🏻QWaitCondition👉🏻Q…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
