当前位置: 首页 > news >正文

[Python数据可视化] Plotly:交互式数据可视化的强大工具

引言: 在数据分析和可视化的世界中,Plotly 是一颗耀眼的明星。它是一个开源的交互式图表库,支持多种编程语言,包括 Python、R 和 JavaScript。Plotly 的强大之处在于它能够创建出既美观又具有高度交互性的图表,使得数据探索和分析变得更加直观和有趣。本文将详细介绍 Plotly 的功能,并通过实际示例展示其在数据可视化中的应用。

Plotly 的优势:

  • 交互性:Plotly 图表具有丰富的交互功能,如缩放、拖动、悬停等,使用户能够更深入地探索数据。
  • 美观性:Plotly 提供了多种美观的图表模板和样式选项,使得图表不仅准确传达信息,还具有吸引力。
  • 多语言支持:Plotly 支持多种编程语言,包括 Python、R 和 JavaScript,方便不同背景的用户使用。
  • 在线编辑器:Plotly 提供了一个在线编辑器(Plotly Dash),用户可以在其中创建和共享交互式图表。

Plotly 的基本使用:

  • 安装:通过 pip install plotly 命令安装 Plotly Python 库。
  • 数据准备:准备需要可视化的数据,可以是 pandas DataFrame、NumPy 数组等。
  • 创建图表:使用 Plotly 的函数和类创建图表,如 plotly.express.scatter()、plotly.graph_objects.Figure() 等。
  • 显示图表:使用 plotly.io.show() 函数显示图表。

Plotly 的图表类型:

  • 散点图:用于展示数据点之间的关系。
  • 折线图:用于展示数据随时间或其他变量的变化趋势。
  • 柱状图:用于展示分类数据的比较。
  • 饼图:用于展示各部分占整体的比例关系。
  • 地图:用于展示地理数据的空间分布。

实际示例:

  • Plotly 的进阶应用:
  • 自定义图表样式:通过修改图表的布局和样式选项,使图表符合个人喜好或品牌风格。
  • 动态图表:使用 Plotly 的动画功能,创建动态变化的图表,展示数据随时间的变化。
  • 交互式仪表盘:使用 Plotly Dash 创建交互式仪表盘,将多个图表集成在一起,实现数据的实时监控和分析。

下面是一个完整的 Python 代码示例,使用 Plotly 创建一个三维曲面图。这个示例将展示如何生成数据、创建图表并显示它:

import plotly.graph_objects as go
import numpy as np# 生成示例数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
x, y = np.meshgrid(x, y)
z = np.sin(np.sqrt(x**2 + y**2))# 创建曲面图
fig = go.Figure(data=[go.Surface(x=x,y=y,z=z,colorscale='Viridis',  # 颜色比例尺showscale=False  # 不显示颜色比例尺)
])# 更新图表布局
fig.update_layout(title='三维曲面图示例',autosize=False,width=800,height=600,margin=dict(l=65, r=50, b=65, t=90),scene=dict(xaxis_title='X 轴',yaxis_title='Y 轴',zaxis_title='Z 轴')
)# 显示图表
fig.show()

import plotly.graph_objects as go
import numpy as np# 生成随机数据,用了标准正态分布(standard normal distribution)来生成 x、y 和 z 的数据
np.random.seed(0)
x = np.random.standard_normal(1000)
y = np.random.standard_normal(1000)
z = np.random.standard_normal(1000)# 创建三维散点图
fig = go.Figure(data=[go.Scatter3d(x=x,y=y,z=z,mode='markers',marker=dict(size=4,color=z,  # 根据z值设置颜色colorscale='Viridis',  # 颜色比例尺opacity=0.8)
)])# 设置图表布局
fig.update_layout(scene=dict(xaxis_title='X 轴',yaxis_title='Y 轴',zaxis_title='Z 轴'),width=800,height=800
)# 显示图表
fig.show()

在这个例子中,我们首先使用 NumPy 生成了一组随机的三维数据。然后,我们使用 Plotly 的 graph_objects 模块创建了一个散点图对象,并设置了标记的大小、颜色和透明度。最后,我们更新了图表的布局,添加了坐标轴标题,并设置了图表的宽度和高度。
生成的三维散点图呈现出聚拢成一个球体的形态,是因为我们使用了标准正态分布(standard normal distribution)来生成 x、y 和 z 的数据。标准正态分布是一种对称的钟形曲线,其均值为 0,标准差为 1。当我们从这样一个分布中随机抽取数据点时,大多数点都会集中在均值附近,但随着距离均值越远,点的数量逐渐减少。

在三维空间中,这些点在三个方向上均匀分布,因此它们在空间中的分布呈现出一种围绕原点(0, 0, 0)对称的球体形状。每个维度上的正态分布确保了在任何一个方向上,远离原点的点数量都相对较少,从而导致球体的形态。

这种分布特性使得三维散点图呈现出球状聚集,这在统计学中是一个典型的特征,表明数据在三个维度上没有明显的方向性偏差。如果我们在生成数据时改变了分布的参数(如均值或标准差),或者使用不同的分布,那么散点图的形态也会相应地改变。

结论: Plotly 是一个功能强大且易于使用的交互式数据可视化工具。通过本文的介绍和实际示例,我们可以看到 Plotly 在数据分析和可视化中的广泛应用。无论是数据科学家、数据分析师还是数据可视化爱好者,Plotly 都是一个值得学习和使用的工具。让我们一起探索 Plotly 的世界,发现数据的魅力!

相关文章:

[Python数据可视化] Plotly:交互式数据可视化的强大工具

引言: 在数据分析和可视化的世界中,Plotly 是一颗耀眼的明星。它是一个开源的交互式图表库,支持多种编程语言,包括 Python、R 和 JavaScript。Plotly 的强大之处在于它能够创建出既美观又具有高度交互性的图表,使得数据…...

Excel--DATEDIF函数的用法及参数含义

DATEDIF函数的用法为: DATEDIF(start_date,end_date,unit),start_date表示的是起始时间,end_date表示的是结束时间。unit表示的是返回的时间代码,是天、月、年等。如下: Datedif函数的参数含义unit参数返回值的意义"y"两个时间段之间的整年数…...

执行网络攻击模拟的 7 个步骤

在进攻和防守策略方面,我们可以从足球队和美式足球队身上学到很多东西。球员们会分析对方球队的策略,找出弱点,相应地调整进攻策略,最重要的是,练习、练习、再练习。作为最低要求,网络安全部门也应该这样做…...

技术成神之路:设计模式(十四)享元模式

介绍 享元模式(Flyweight Pattern)是一种结构性设计模式,旨在通过共享对象来有效地支持大量细粒度的对象。 1.定义 享元模式通过将对象状态分为内部状态(可以共享)和外部状态(不可共享)&#xf…...

使用systemctl实现开机自启动jar包

目录 1. 创建服务文件2. 配置服务文件3. 重新加载 systemd 配置4. 启动服务5. 查看服务状态 1. 创建服务文件 创建服务文件: 在 /etc/systemd/system/ 目录下创建一个新的服务文件 myapp.service。 sudo vim /etc/systemd/system/myapp.service2. 配置服务文件 按i…...

2024.9.20营养小题【2】(动态分配二维数组)

这道题里边涉及到了动态分配二维数组的知识点,不刷这道题我也不知道这个知识点,算是一个比较进阶一点的知识点了。 参考:C语言程序设计_动态分配二维数组_哔哩哔哩_bilibili【C/C 数据结构 】二维数组结构解析 - 知乎 (zhihu.com)...

前端web端项目运行的时候没有ip访问地址

我们发现 没有netWork 的地址 导致 团队内其他同学无法打开我们的地址 进行访问 在page.json 中的运行 指令中 添加 --host 记得加上空格 这样我们就可以看到这个地址了 团队其他同学 就可以访问我们这个地址了...

微服务架构陷阱与挑战

微服务架构6大陷阱 现在微服务的基础设施还是越来越完善了,现在基础设施缺乏的问题逐渐被解决了。 拆分粒度太细,服务关系复杂 拆分降低了服务的内部复杂度,但是提升了系统的外部复杂度,服务越多,服务和服务之间的连接…...

react的事件绑定

文章目录 基本示例使用箭头函数事件对象阻止默认行为绑定事件处理函数的上下文 在 React 中,事件绑定主要通过 JSX 属性来实现。事件处理函数被传递给相应的事件属性,例如 onClick、onChange 等。这些属性会被绑定到 HTML 元素上,并在事件发生…...

ASP.NET Core 入门教学二十九 DDD设计

在软件开发中,领域驱动设计(Domain-Driven Design,简称DDD)是一种重要的软件设计方法论,它强调通过深入理解业务领域来构建高质量的软件系统。DDD的核心思想是将复杂的业务逻辑集中在领域模型中,并通过分层…...

Rocprofiler测试

Rocprofiler测试 一.参考链接二.测试过程1.登录服务器2.使用smi获取列表3.使用rocminfo获取Agent信息4.准备测试用例5.The hardware counters are called the basic counters6.The derived metrics are defined on top of the basic counters using mathematical expression7.P…...

基于python flask的高血压疾病预测分析与可视化系统的设计与实现,使用随机森林、决策树、逻辑回归、xgboost等机器学习库预测

研究背景 随着现代社会的快速发展,生活方式的改变和人口老龄化的加剧,心血管疾病,尤其是高血压,已成为全球范围内的重大公共健康问题。高血压是一种常见的慢性疾病,其主要特征是动脉血压持续升高。长期不控制的高血压…...

Lombok 与 EasyExcel 兼容性问题解析及建议

在 Java 开发中,Lombok 被广泛用于减少样板代码,如 Getter、Setter、构造函数等。然而,在与像 EasyExcel 这样依赖反射机制的库一起使用时,可能会遇到一些意想不到的问题。本文将深入探讨 Lombok 与 EasyExcel 之间的兼容性问题&a…...

Kubeadm快速安装 Kubernetes集群

1. Kubernetes简介 Kubernetes(k8s)是谷歌开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。它具有以下特点: 开源容器化自动部署扩展高可用 2. Kubernetes架构 Kubernetes遵循主从式架构设计,主要分…...

OpenJudge | 八皇后问题

总时间限制: 10000ms 内存限制: 65536kB 描述 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方。 输入 无输入。 输出 按给定顺序和格式输出所有八皇后问题的解(见Sample Output)。 样例输入 (null)样例输出 No. 1 …...

C#往压缩包Zip文件的文件追加数据

C#往压缩包Zip文件的文件追加数据 往一个已经压缩好的压缩包里追加数据,一般就有两种方式,一种是前面已经学习过的,就是追加一个新的文件, 另外一种就是往已经存在的文件追加数据。 往已经存在的文件追加数据,需要先找到文件索引。 在压缩包里声明的名称,与外面的文件路…...

局域网共享文件夹:您没有权限访问,请与网络管理员联系

局域网共享文件夹:您没有权限访问,请与网络管理员联系 win10 1909 专业版背景 我有两个电脑,还有两块外挂硬盘,较大的一块放在老电脑上,为了方便用垃圾百度网盘在里边下载东西,又不污染新电脑的环境。 如…...

科技修复记忆:轻松几步,旧照变清晰

在时间的长河中,旧照片承载着无数珍贵的记忆与故事。然而,随着岁月的流逝,这些照片往往变得模糊不清,色彩黯淡,令人惋惜。 幸运的是,随着科技的发展,我们有了多种方法来修复这些旧照片的画质&a…...

java -versionbash:/usr/lib/jvm/jdk1.8.0_162/bin/java:无法执行二进制文件:可执行文件格式错误

实验环境:Apple M1在VMwareFusion使用Utubun Jdk文件错误  尝试: 1、重新在网盘下载java1.8 2、在终端通过命令下载 3、确保 JDK 正确安装在系统中,可以通过 echo $JAVA_HOME 检查 JAVA_HOME 环境变量是否设置正确。 &#xfff…...

大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) ​遍历字符串​:通过外层循环逐一检查每个字符。​遇到 ? 时处理​: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: ​与…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析,分为​​已启动​​和​​未启动​​两种场景: 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​:当其他组件(如Activity、Service)通过ContentR…...