当前位置: 首页 > news >正文

Python-df.pop()和np.array.shape()属性

1.df.pop() 删除某一列

可以使用这个来删除某一列(不能是多列),只有一个参数,就是列名,可以是str类型,函数返回的是被删除的列,df直接是删除后的df,不需要我们处理。

我们建模时,需要单独保留某个特征,比如y值,我们就可以用y=xx.pop(label)了,很实用。

实例

(py3.7) C:\Users\HASEE>python
Python 3.7.16 (default, Jan 17 2023, 16:06:28) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
...                    ('parrot', 'bird', 24.0),
...                    ('lion', 'mammal', 80.5),
...                    ('monkey', 'mammal', np.nan)],
...                   columns=('name', 'class', 'max_speed'))
>>> dfname   class  max_speed
0  falcon    bird      389.0
1  parrot    bird       24.0
2    lion  mammal       80.5
3  monkey  mammal        NaN
>>> df.pop('class')         # 返回值直接是删除的某列的内容
0      bird
1      bird
2    mammal
3    mammal
Name: class, dtype: object
>>> df                      # 删除class列之后的dfname  max_speed
0  falcon      389.0
1  parrot       24.0
2    lion       80.5
3  monkey        NaN

内容参考自:https://www.cnblogs.com/cgmcoding/p/13729825.html

2. np.array.shape()

numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数。有时候我们可能需要知道某一维的特定维数。

(python3.7) C:\Users\HASEE>python
Python 3.7.16 (default, Jan 17 2023, 16:06:28) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np>>> # 二维  
>>> y=np.array([[1, 2, 3], [4, 5, 6]])
>>> print(y)
[[1 2 3][4 5 6]]
>>> print(y.shape)
(2, 3)
>>> print(y.shape[0])
2
>>> print(y.shape[1])
3
>>>
>>> # 三维  
>>> x=np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [0, 1, 2]],[[3, 4, 5], [6, 7, 8]]])
>>> print(x)
[[[1 2 3][4 5 6]][[7 8 9][0 1 2]][[3 4 5][6 7 8]]]
>>> print(x.shape[0])
3
>>> print(x.shape[1])
2
>>> print(x.shape[2])
3

要点:

y是一个两行三列的二维数组,y.shape[0]代表行数,y.shape[1]代表列数。

x是一个包含了3个两行三列的二维数组的三维数组,x.shape[0]代表包含二维数组的个数,x.shape[1]表示二维数组的行数,x.shape[2]表示二维数组的列数。

shape[0]表示最外围的数组的维数,shape[1]表示次外围的数组的维数,数字不断增大,维数由外到内。

内容参考自:https://www.cnblogs.com/wanglinjie/p/11761779.html

相关文章:

Python-df.pop()和np.array.shape()属性

1.df.pop() 删除某一列 可以使用这个来删除某一列(不能是多列),只有一个参数,就是列名,可以是str类型,函数返回的是被删除的列,df直接是删除后的df,不需要我们处理。 我们建模时&a…...

多线程并发编程笔记03(小滴课堂)---线程安全性

原子性操作: 这样一段代码。 我们输出一下: 我们发现它的结果和我们想的不太一样。 正常应该输出1000. 这是因为没有保证原子性。 所以我们来加上原子性: 这样就保证了我们的原子性。 接下来我们来细说说这个关键字: 我发现我…...

提升代码质量,使用插件对 java 代码进行扫描检查分析

目录前言一、使用maven-checkstyle-plugin插件1. maven-checkstyle-plugin 介绍2.引入依赖3.使用二、使用 idea 插件1.安装2.使用前言 很多时候我们的代码写的不规范,比如没缩进、参数间没空格、导入的包没用到没删除、方法很长没有进行拆分、 直接对方法参数进行了…...

如何用秒验提升用户体验和转换率?

手机号验证是移动应用开发中常见的需求,它可以用于用户注册、登录、身份认证等场景。目前,市场上主要的手机号验证方式是短信验证码,但这种方式存在一些问题,例如: 延迟:短信验证码需要等待运营商发送和用…...

【新】(2023Q2模拟题JAVA)华为OD机试 - 机器人活动区域

最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南华为od机试,独家整理 已参加机试人员的实战技巧本篇题解:机器人活动区域 题目 现有一…...

2023软件测试面试真题宝典大汇总,没收藏的都后悔了

下边是我根据工作这几年来的面试经验,加上之前收集的资料,整理出来350道软件测试工程师 常考的面试题。字节跳动、阿里、腾讯、百度、快手、美团等大厂常考的面试题,在文章里面都有提到。 虽然这篇文章很长,但是绝对值得你点击一…...

十、MyBatis的逆向工程

一、MyBatis的逆向工程 正向工程:先创建java实体类,由框架负责根据实体类生成数据库表。Hibernate是支持正向工程逆向工程:先创建数据库表,由框架负责根据数据库表,反向生成如下资源: Java实体类 Mapper接口 Mapper映射文件 1.创…...

网站是怎么屏蔽脏话的呢:简单学会SpringBoot项目敏感词、违规词过滤方案

一个社区最重要的就是交流氛围与审查违规,而这两者都少不了对于敏感词进行过滤的自动维护措施。基于这样的措施,我们才能基本保证用户在使用社区的过程中,不至于被敏感违规词汇包围,才能够正常的进行发布帖子和评论,享…...

kafka经典面试题

这里写目录标题1.生产者1.1 生产者发送原理1.2 分区有什么好处?1.3 生产消息时, 是如何决定消息落盘到哪个分区的?1.4 生产者如何提高吞吐量1.5 如何保证生产的消息不丢失(能成功落盘)1.6 ack为-1, 就肯定不会丢失数据吗?1.7 生产者重复发送消息的场景1.8 生产者如何保证数据…...

我的CSDN笔记总索引(阅读量降序,代码自动遍历生成HTML5源码)

Python代码用Linux命令行工具crul获取CSDN博文页面源码,Python内置re正则解析出博文笔记信息。 (本文获得CSDN质量评分【xx】)【学习的细节是欢悦的历程】Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学…...

修改Windows hosts文件的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

愤怒的Spring(三)Idaea Maven搭建Spring并运行项目(超详细,超全)

愤怒的Spring(三) 一、目录结构 环境搭配与上一篇内容一样,详情请看愤怒的Spring(二)Idaea Maven搭建Spring并运行项目(超详细,超全)https://blog.csdn.net/sz710211849/article/d…...

NDK(三):JNIEnv解析

文章目录一、概述二、JNIEnv结构体三、JNINativeInterface结构体3.1 Class操作3.2 反射操作3.3 对象字段 & 方法操作3.4 类的静态字段 & 静态方法操作3.5 字符串操作3.6 锁操作3.7 数组操作3.8 注册和反注册native方法3.9 异常Exception操作3.10 引用的操作3.11 其它四…...

禅道——图文安装及使用教程

👨‍💻作者简介:练习时长两年半的java博主 📖个人主页:君临๑ 🎞️文章介绍:禅道的2023版安装图文教程 🎁 如果文章对你有用,就点个免费的赞吧👍 目录 一、搜…...

Java基础——枚举类enum

枚举类是一种特殊的数据类型,可以理解为一个数组,数组成员为特定的对象枚举类不能在外面创建对象,在类里面就包含了一组特定的对象,每个对象有着相同数量的属性枚举类的对象放在最前面,且对象们的顺序就是对应的索引枚…...

【机器学习】一文了解如何评估和选择最佳机器学习模型并绘制ROC曲线?

一文了解如何评估和选择最佳机器学习模型? 问ChatGPT:如何选择最佳机器学习模型?问ChatGPT:评估机器学习模型有哪些指标?0. 引言1. 混淆矩阵2. 评价指标3. ROC与AUC4. PR(precision recall )曲线参考资料问ChatGPT:如何选择最佳机器学习模型? 选择最佳机器学习模型是机…...

vue3 笔记

watchEffect 的起源 stackoverflow - watchEffect vs. watch watch behavior in v3 is different to v2Change watch Options API to trigger immediately vue3 最初只有 watch ,没有 watchEffect。这个时候的 watch 默认是 immediate true,可以 wat…...

第12章_MySQL数据类型精讲

第12章_MySQL数据类型精讲 🏠个人主页:shark-Gao 🧑个人简介:大家好,我是shark-Gao,一个想要与大家共同进步的男人😉😉 🎉目前状况:23届毕业生&#xff0c…...

二叉树路径总和第一题

1题目 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。 叶子节点 是指没有…...

@RefreshScope源码解析

前言 RefeshScope这个注解想必大家都用过,在微服务配置中心的场景下经常出现,它可以用来刷新Bean中的属性配置,那么它是如何做到的呢?让我们来一步步揭开它神秘的面纱。 RefreshScope介绍 就是说我们在修改了bean属性的时候项目…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 ​…...