当前位置: 首页 > news >正文

【自然语言处理】实验三:新冠病毒的FAQ问答系统

目录

前言

1.新建data_process.py

1.1导入包并定义功能模块1用来读取问题和答案FAQ的文件

1.2功能模块2:进行问题/问题列表处理(正则化,分词)

1.3功能模块3:处理输入的问题

1.4功能模块4:计算输入问题与问题列表之间的余弦相似度,选出相似度最大的问题的索引

2.新建faq_test.py

2.1获取问题列表和答案列表并对问题列表进行预处理

2.2进行FAQ问答系统测试

2.3结果展示

总结


🌈嗨!我是Filotimo__🌈。很高兴与大家相识,希望我的博客能对你有所帮助。

💡本文由Filotimo__✍️原创,首发于CSDN📚。

📣如需转载,请事先与我联系以获得授权⚠️。

🎁欢迎大家给我点赞👍、收藏⭐️,并在留言区📝与我互动,这些都是我前进的动力!

🌟我的格言:森林草木都有自己认为对的角度🌟。

前言

在信息时代,智能问答系统的应用越来越广泛,尤其是在疫情信息传播中,这类系统的作用尤为重要。


实验步骤:(新冠病毒的FAQ问答系统源码以及配套文件资源已上传)

1.新建data_process.py

1.1导入包并定义功能模块1用来读取问题和答案FAQ的文件
import re
import jieba
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
def read_corpus(file):with open(file, encoding='utf-8') as f:list = []lines = f.readlines()for i in lines:list.append(i)return list

`read_corpus` 函数负责从指定的文件中读取问题或答案。我们利用 `open` 函数打开文件,并逐行读取内容。每行内容被添加到列表中并最终返回。这一模块的功能比较简单,但它为后续的数据处理奠定了基础。

1.2功能模块2:进行问题/问题列表处理(正则化,分词)
def get_question_list(questions):if len(questions) == 1:  new_sent = re.sub(r'[^\w]', '', questions[0])new_sent = ''.join(e for e in new_sent if e.isalnum())new_sent = ' '.join(jieba.lcut(new_sent))return new_sentelse:question_list = []for sentence in questions:  new_sent = re.sub(r'[^\w]', '', sentence)new_sent = ''.join(e for e in new_sent if e.isalnum())seg_list = ' '.join(jieba.lcut(new_sent))question_list.append(seg_list)return question_list

`get_question_list` 函数负责对问题进行正则化和分词处理。正则化过程主要是去除标点符号和非字母数字字符。分词则是将连续的文本拆分成有意义的词汇,这里使用了 `jieba` 库进行中文分词处理。根据输入的参数,函数可以处理单个问题或多个问题列表。

1.3功能模块3:处理输入的问题
def input_question_process(questions_list, input_ques):questions_list_use = questions_list.copy()input_ques = [input_ques]input_question = get_question_list(input_ques)questions_list_use.append(input_question)vectorizer = TfidfVectorizer()vectorizer_related_ques = vectorizer.fit_transform(questions_list_use)return vectorizer_related_ques

在 `input_question_process` 函数中,我们首先将用户输入的问题与已有的问题列表进行整合。然后使用 `TfidfVectorizer` 将文本转化为 TF-IDF 向量表示。TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用的文本特征提取方法,它可以反映词汇在文档中的重要性。

1.4功能模块4:计算输入问题与问题列表之间的余弦相似度,选出相似度最大的问题的索引
def ques_idx_cosine_sim(input_ques, questions):score = []input_ques = (input_ques.toarray())[0]for question in questions:question = question.toarray()num = float(np.matmul(question, input_ques))denom = np.linalg.norm(question) * np.linalg.norm(input_ques)cos = num / (denom + 1e-3)score.append(cos)if max(score) < 0.1:print('对不起,本FAQ库中暂时没有与您的提问相关的内容,我们将努力改进!')else:best_idx = score.index(max(score))return best_idx

`ques_idx_cosine_sim` 函数计算用户输入的问题与问题列表中所有问题之间的余弦相似度。余弦相似度是衡量两个向量相似度的一种方法,它值域在 [-1, 1] 之间,值越大表示相似度越高。我们使用 `numpy` 库中的线性代数操作计算相似度,并从中选择最相似的问题索引。

2.新建faq_test.py

在faq_test.py部分,会将前面的功能模块整合,完成了一个简单的 FAQ 问答系统。系统的运行步骤如下:

1. 从文件中读取问题和答案。
2. 对问题进行预处理,得到处理后的问题列表。
3. 循环接收用户输入的问题,对输入问题进行处理,并计算其与 FAQ 问题的相似度。
4. 根据相似度选择最匹配的问题,并输出对应的答案。

2.1获取问题列表和答案列表并对问题列表进行预处理
questions = read_corpus('./data/questions.txt')
answers = read_corpus('./data/answers.txt')questions_list = get_question_list(questions)
2.2进行FAQ问答系统测试
print('欢迎您使用FAQ问答系统...')
while True:input_ques = input('请输入您需要了解的新冠病毒问题(输入q退出系统):\n')if input_ques == 'q':print('谢谢您的关注!')breakelse:ques_process = input_question_process(questions_list, input_ques)print('正在FAQ库中寻找答案,请稍等...')answer_idx = ques_idx_cosine_sim(ques_process[-1], ques_process[0:-1])if answer_idx is not None:print('亲,我们给您找到的答案如下: \n', answers[answer_idx])print('FAQ库中相似的问题:', questions[answer_idx])
2.3结果展示


总结

通过此次实验,我们成功构建了一个基于 Python 的新冠病毒 FAQ 问答系统。该系统实现了文本预处理、向量化、相似度计算等核心功能,能够有效地为用户提供相关的答案。

相关文章:

【自然语言处理】实验三:新冠病毒的FAQ问答系统

目录 前言 1.新建data_process.py 1.1导入包并定义功能模块1用来读取问题和答案FAQ的文件 1.2功能模块2&#xff1a;进行问题/问题列表处理&#xff08;正则化&#xff0c;分词&#xff09; 1.3功能模块3&#xff1a;处理输入的问题 1.4功能模块4&#xff1a;计算输入问题与问题…...

「C++系列」文件和流

【人工智能教程】&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。 点击跳转到网站&#xff1a;【人工智能教程】 文章目录 一、文件和流1. 文件操作① 打开文件② 读写文件 2. 流操作 二、应…...

视频美颜SDK核心功能解析:打造高效直播美颜工具方案详解

随着直播行业的迅猛发展&#xff0c;用户对于直播画质和个人形象的要求越来越高。视频美颜SDK作为一项关键技术&#xff0c;已经成为各大直播平台和短视频应用的重要组成部分。通过实时美颜技术&#xff0c;用户能够在直播过程中呈现出更加理想的形象&#xff0c;从而提升直播体…...

深入解析:高性能 SSE 服务器的设计与实现

在当今的实时 Web 应用中&#xff0c;服务器发送事件&#xff08;Server-Sent Events&#xff0c;SSE&#xff09;技术扮演着越来越重要的角色。今天&#xff0c;我们将深入探讨一个用 Go 语言实现的高性能 SSE 服务器的设计和实现细节。这个服务器不仅能够处理大量并发连接&am…...

C#为任意组件开发登录功能的记录

非常简单&#xff0c;直接给出代码&#xff1a; 数据库操作类 这个无需多言就是简单的包含了数据操作的内容&#xff0c;允许你在这一个类中写完关于本地数据库或者云数据库操作的逻辑&#xff0c;与登录逻辑分开哦。 注意&#xff0c;如果你的软件要给别人运行使用&#xf…...

AI免费UI页面生成

https://v0.dev/chat v0 - UI设计 cursor - 编写代码 参考&#xff1a;https://www.youtube.com/watch?vIyIVvAu1KZ4 界面和claude类似&#xff0c;右侧展示效果和代码 https://pagen.so/...

2024新动态:低代码开发占领新常态市场

随着技术的不断进步和数字化转型的加速&#xff0c;企业对于快速开发和部署应用程序的需求日益增长。2024年&#xff0c;低代码开发平台已经成为新常态市场的重要力量&#xff0c;它通过简化应用程序的开发过程&#xff0c;让非技术背景的业务用户也能参与到软件开发中来&#…...

【SQL 用大白话描述事务并发 可能会遇到的问题】及解决策略

在SQL数据库中,当多个事务同时进行时,可能会出现并发事务问题。这些问题通常包括以下几种: 首先,我们要清楚一点,这些问题都是与事务的四大特性之一的隔离性有关。并且通常发生在并发事务场景中。 脏读(Dirty Read): 脏读发生在一个事务读取了另一个事务未提交的数据。…...

nginx安装及vue项目部署

安装及简单配置 在usr/local下建好nginx文件夹&#xff0c;下载好nginx-1.26.2.tar.gz压缩文件.安装编译工具及库文件 yum -y install make zlib zlib-devel gcc-c libtool openssl openssl-devel pcre-devel gcc、gcc-c # 主要用来进行编译相关使用 openssl、ope…...

第十三周:机器学习笔记

第十三周周报 摘要Abstract一、机器学习——Transformer&#xff08;上&#xff09;1. Sequence to Sequence(Seq 2 Seq&#xff0c;序列到序列模型) 的应用2. Transformer的结构2.1 Transformer encoder&#xff08;Transformer 编码器&#xff09; 二、Pytorch学习1. 网络模型…...

HarmonyOS学习(十三)——数据管理(二) 关系型数据库

文章目录 1、基本概念2、运行机制3、默认配置与限制4、接口说明5、实战&#xff1a;开发“账本”5.1、创建RdbStore5.2、创建数据库5.3、增加数据5.4、删除数据5.5、修改数据5.6、查询数据5.7、备份数据库5.8、恢复数据库5.9、删除数据库 官方文档地址&#xff1a; 通过关系型…...

【工具变量】科技金融试点城市DID数据集(2000-2023年)

时间跨度&#xff1a;2000-2023年数据范围&#xff1a;286个地级市包含指标&#xff1a; year city treat post DID&#xff08;treat*post&#xff09; 样例数据&#xff1a; 包含内容&#xff1a; 全部内容下载链接&#xff1a; 参考文献-pdf格式&#xff1a;https://…...

import torch import torchIllegal instruction的可能解决方法

It is numpy 1.19.5 issue. You can fix it by installing previous minor version. pip3 install numpy1.19.4 参考自&#xff1a;Illegal instruction (core dumped) - Jetson & Embedded Systems / Jetson TX2 - NVIDIA Developer Forums...

[SDX35+WCN6856]SDX35 + WCN6856 WiFi导致系统crash问题分析及解决方案

SDX35 SDX35介绍 SDX35设备是一种多模调制解调器芯片,支持 4G/5G sub-6 技术。它是一个4nm芯片专为实现卓越的性能和能效而设计。它包括一个 1.9 GHz Cortex-A7 应用处理器。 SDX35主要特性 ■ 3GPP Rel. 17 with 5G Reduced Capability (RedCap) support. Backward compati…...

力扣题解2376

大家好&#xff0c;欢迎来到无限大的频道。 今日继续给大家带来力扣题解。 题目描述&#xff08;困难&#xff09;&#xff1a; 统计特殊整数 如果一个正整数每一个数位都是 互不相同 的&#xff0c;我们称它是 特殊整数 。 给你一个 正 整数 n &#xff0c;请你返回区间 …...

浅谈计算机视觉的学习路径1

计算机视觉&#xff08;Computer Vision, CV&#xff09;是人工智能领域的一个重要分支&#xff0c;它的目标是使计算机能够像人类一样理解和处理图像和视频数据。 面向想要从事该方向的大学生&#xff0c;笔者这里给出以下是关于计算机视觉的学习路径建议&#xff1a; 简要了解…...

VScode C语言中文乱码问题解决

&#x1f389; 前言 省流&#xff1a;这不是正经的教学&#xff0c;纯属是作者弱智操作导致的乱码问题&#xff0c;绝不是是什么配置原因导致的。 &#x1f389; 问题描述 贴一下我写的C语言代码&#xff08;太久没写了&#xff0c;最近学数据结构才拾起来&#xff09; #in…...

安全基础学习-AES128加密算法

前言 AES&#xff08;Advanced Encryption Standard&#xff09;是对称加密算法的一个标准&#xff0c;主要用于保护电子数据的安全。AES 支持128、192、和256位密钥长度&#xff0c;其中AES-128是最常用的一种&#xff0c;它使用128位&#xff08;16字节&#xff09;的密钥进…...

Python 项目实践:文件批量处理

Python 项目实践&#xff1a;文件批量处理 文章目录 Python 项目实践&#xff1a;文件批量处理一 背景二 发现问题三 分析问题四 解决问题1 找到所有文件2 找到文件特定字段3 找出复杂的字符串4 替换目标字符串5 验证文件是否正确 五 总结六 完整代码示例七 源码地址 本项目旨在…...

jsonschema - 校验Json内容和格式

1、创建对象 from pydantic import BaseModel from typing import Listclass Person(BaseModel):name: strage: intclass Student(Person): level: int 16friends: List[Person] 2、生成 schema schema Student.model_json_schema()内容如下 {$defs: {Person: {propertie…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...