当前位置: 首页 > news >正文

信息安全数学基础(15)欧拉定理

前言

       欧拉定理是数论中的一个重要定理,它建立了模运算下指数与模的互质关系。这个定理在密码学、信息安全等领域有着广泛的应用,特别是在公钥密码体制(如RSA加密算法)中。

一、表述

        设 n 是一个正整数,a 是一个与 n 互质的整数(即 gcd(a,n)=1),那么 (n)≡1(modn),其中 φ(n) 是欧拉函数,表示小于 n 且与 n 互质的正整数的个数。

二、定义

       欧拉函数 φ(n) 的定义是:对于任意正整数 n,φ(n) 是小于或等于 n 的正整数中与 n 互质的数的数目。例如,φ(1)=1,φ(2)=1,φ(3)=2,φ(4)=2,φ(5)=4(注意这里 φ(5) 应该是 4 的一个笔误,应为 φ(5)=4−1=1,因为小于 5 且与 5 互质的数只有 1)。

三、证明概要

  1. 构造集合:考虑集合 A={a,2a,3a,…,(n−1)a},其中所有元素均对 n 取模。

  2. 互质性质:由于 a 与 n 互质,可以证明集合 A 中的元素模 n 后两两不同,且都与 n 互质。

  3. 重新排列:将集合 A 中的元素重新排列,使得每个元素都对应到小于 n 且与 n 互质的一个数。这样,我们可以得到一个新的集合 B,其中包含了所有小于 n 且与 n 互质的数。

  4. 乘积相等:考虑 A 和 B 中元素的乘积。一方面,A 中元素的乘积是 aφ(n)(n−1)!(模 n);另一方面,B 中元素的乘积是 φ(n)!×(与n互质的数的某个排列)。由于两者模 n 相等,且 φ(n)! 与 n 互质(因为 φ(n)! 只包含小于 n 的质数因子),可以推出 aφ(n)≡1(modn)。

四、应用

       欧拉定理在密码学中有着广泛的应用,特别是在RSA加密算法中,它用于证明公钥和私钥的正确性。此外,欧拉定理也是许多数论问题和算法(如中国剩余定理、费马小定理的推广等)的基础。

 结语  

困难是纸老虎,你强它就弱

用坚定的信念和不懈的努力

去征服每一个看似不可能的难关

!!!

相关文章:

信息安全数学基础(15)欧拉定理

前言 欧拉定理是数论中的一个重要定理,它建立了模运算下指数与模的互质关系。这个定理在密码学、信息安全等领域有着广泛的应用,特别是在公钥密码体制(如RSA加密算法)中。 一、表述 设 n 是一个正整数,a 是一个与 n 互…...

sar(1) command

文章目录 1.简介2.格式3.选项4.示例参考文献 1.简介 sar(System Activity Report)收集、报告或保存系统活动信息。 sar 是一个用于监控和报告系统性能的命令行工具。它是 sysstat 套件的一部分,能够收集和报告各种系统活动的信息&#xff0…...

掌握 JavaScript 中的函数表达式

函数表达式是 javascript 中定义函数的一种方式。与函数声明不同,函数表达式可以是匿名的,并且通常用于将函数视为值的情况。在本文中,我们将探讨函数表达式、如何将函数视为值、回调函数以及函数表达式和函数声明之间的差异。 函数表达式 …...

OpenGL 原生库6 坐标系统

概述 为了将坐标从一个坐标系变换到另一个坐标系,我们需要用到几个变换矩阵,最重要的几个分别是模型(Model)、观察(View)、投影(Projection)三个矩阵。我们的顶点坐标起始于局部空间(Local Space),在这里它称为局部坐标(Local Coordinate)&a…...

LabVIEW提高开发效率技巧----VI服务器和动态调用

VI服务器(VI Server)和动态调用是LabVIEW中的两个重要功能,可以有效提升程序的灵活性、模块化和可扩展性。通过这两者的结合,开发者可以在运行时动态加载和调用VI(虚拟仪器),实现更为复杂的应用…...

求1000以内所有恰好能分解成10组两个素数之和

要求 根据哥德巴赫猜想,任意一个大偶数都可以分解为两个素数之和。但许多偶数分解为两个素数之和并不是唯一的。 请编写函数fun,其功能是:求1000(不包括1000)以内的所有恰好能分解成10组两个素数之和(5109和1095被认为是同一组)的偶并依次存入数组a中并…...

Webpack 和 Vite 的区别

Webpack 是一种模块打包工具,主要功能是将各种资源(如 JavaScript、CSS、图片等)通过 loader 和 plugin 转换和打包成可以直接在浏览器中运行的代码。其核心思想是以代码分割、按需加载和优化资源来提升性能。 Vite 是一种新型构建工具&…...

C++——初步认识C++和namespace的用法

1.编程语言排行榜 我们通过排行可以看出 C在变成语言中还是占据着重要的地位 2.C在工作领域中的应用 1.PC客户端开发。⼀般是开发Windows上的桌面软件,比如WPS之类的,技术栈的话⼀般是C和 QT,QT 是⼀个跨平台的 C图形用户界面(G…...

LeetCode118:杨辉三角

题目链接&#xff1a;118. 杨辉三角 - 力扣&#xff08;LeetCode&#xff09; 代码如下 class Solution {public:vector<vector<int>> generate(int numRows) {vector<vector<int>> dp(numRows);vector<int> temp(numRows);for (int i 0; i &…...

介绍一下大模型或者多模态?

什么是大模型、多模态 大模型多模态 大模型 定义&#xff1a; 大模型&#xff0c;通常指的是在深度学习领域&#xff0c;具有大规模参数和复杂结构的模型。这些模型往往需要大量的计算资源和数据进行训练和推理。大模型因其强大的表示能力和泛化性能&#xff0c;在多个领域展现…...

深度学习之图像数据集增强(Data Augmentation)

文章目录 一、 数据增强概述二、python实现传统数据增强参考文献 一、 数据增强概述 数据增强&#xff08;Data Augmentation&#xff09;是一种技术&#xff0c;通过对现有数据进行各种变换和处理来生成新的训练样本&#xff0c;从而增加数据集的多样性和数量。这些变换可以是…...

小程序与APP的区别

目录 前言1. 开发方式与成本2. 运行环境与获取途径3. 功能复杂度与交互体验4. 更新与维护5. 推广与用户获取6. 占用空间与存储7. 可分享性总结 前言 小程序与APP作为两种不同类型的应用程序&#xff0c;它们在多个方面存在明显的区别。以下是对这些区别的详细阐述&#xff1a;…...

Linux Kernel Makefiles 编译标志详解

在Linux内核开发中&#xff0c;Makefile文件扮演着至关重要的角色&#xff0c;它指导make命令如何编译和链接内核源代码。Makefile中包含了多种编译标志&#xff08;flags&#xff09;&#xff0c;这些标志控制着编译、汇编和链接过程的不同方面。本文将详细介绍几种关键的编译…...

数据可视化pyecharts——数据分析(柱状图、折线图、饼图)

安装 首先确保已经安装了pyecharts库&#xff0c;如果没有&#xff0c;可以通过pip install pyecharts进行安装。 柱状图 从pyecharts.charts导入Bar&#xff0c;从pyecharts导入options。准备数据&#xff08;如类别数据x_data和对应的数值数据y_data&#xff09;。创建Bar对…...

小程序构建npm失败

小程序构建npm失败 项目工程结构说明解决方法引入依赖导致的其他问题 今天在初始化后的小程序中引入TDesign组件库&#xff0c;构建npm时报错。 项目工程结构说明 初始化后的项目中&#xff0c;包含miniprogram文件夹和一些项目配置文件&#xff0c;在project.config.json文件中…...

计算机人工智能前沿进展-大语言模型方向-2024-09-20

计算机人工智能前沿进展-大语言模型方向-2024-09-20 1. Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation Authors: Cheng Charles Ma, Kevin Hyekang Joo, Alexandria K. Vail, Sunreeta Bhattacharya, Alvaro Fern’andez Garc’ia, Kailan…...

cv环境设置

pytorch TensorFlow。。。 环境布置&#xff0c;库的安装顺序&#xff1a; 确定显卡可用的cuda上下限 (比如3090需要至少11.x以上的cuda参考&#xff1a; 一文理顺&#xff1a;pytorch、cuda版本&#xff0c;从此不再为兼容问题头疼&#xff01; - 哔哩哔哩 (bilibili.com)&am…...

线性代数书中求解线性方程组的三种方法的实例

目录 一、克拉默法则(P45) 二、逆矩阵(P46) 三、高斯-约旦消元法(P65) 一、克拉默法则(P45) 二、逆矩阵(P46) 三、高斯-约旦消元法(P65)...

Linux容器化管理——Docker常见命令总结

创建镜像 docker build -t &#xff08;镜像名&#xff09; . 自动在当前目录下找dockerfile也可换成其他路径 查看本地镜像 docker images 登陆镜像服务器 docker login -u &#xff08;登录名&#xff09; -p &#xff08;登陆密码&#xff09; &#xff08;镜像服务器…...

智慧校园建设解决方案建设系统简介

一、建设背景 1.1 政策背景 1.2 班牌的演变 1.3 建设愿景 二、 智慧班牌简介 三、智慧班牌系统 3.1 系统概述 3.2 软件平台功能交互简介 3.2.1 智慧班牌与管理平台间的功能关联 3.2.2 手机客户端&#xff08;管理员、教师、家长端&#xff09; 3.2.3 手机客户端&#x…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...