DINO-DETR在COCO缩减数据集上实验结果分析
博主在进行DINO-DETR模型实验时,使用缩减后的COCO数据集进行训练,发现其mAP值只能达到0.27作用,故而修改了下pycocotool的代码,令其输出每个类别的AP值,来看看是由于什么原因导致这个问题。
之所以这样是因为博主认为各类别的AP值是不均匀的,必定由学得好的与学得不好的。
参数设置:batch-size=1,lr=0.00005
使用22个epoch中训练结果最好的那个进行验证,结果如下:
【truck,car,bus】
分别为0.02,0.11,0.70,map为0.28
batch-size=2,lr=0.0001,epoch=24。结果如下:
随后使用官方给定的训练后的模型进行测试:
【'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck'】
对应car,bus,truck为:0.49,0.72,0.42,map值为0.54
上述实验结果首先证明了博主的猜想,即各个类别的AP值是不同的,也就说明其并非是对所有类别信息都有一个较好的结果。
其次尝试分析一下造成这个问题的原因。
首先在我们缩小的COCO数据集上,尽管car的标注较多,但目标都较小,而且存在很大程度的遮挡。且car在出现时背景复杂多变(有时是通过窗户看到,有时出现在马路上,有时旁边出现其他的物体),周边出现多种信息。
而bus尽管数量上并不占优,但其在出现时特征较为明显,显示较为完整,且出现时背景较为固定。(多为公路上出现)故而其学习效果较好。
博主选择了几个具有代表性的图像进行展示,用以证实博主上面的猜想。
使用DINO-DETR官方给定的权重模型来验证完整COCO数据集,完整结果如下:
IoU metric: bboxAverage Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.491, per category = [ 0.607 0.368 0.493 0.505 0.750 0.727 0.723 0.428 0.321 0.3130.709 0.690 0.530 0.293 0.434 0.793 0.721 0.654 0.603 0.6380.717 0.781 0.752 0.730 0.192 0.468 0.216 0.421 0.528 0.7290.301 0.457 0.518 0.509 0.388 0.423 0.576 0.461 0.568 0.4340.442 0.495 0.464 0.280 0.264 0.471 0.310 0.270 0.431 0.3920.262 0.277 0.481 0.610 0.560 0.447 0.345 0.499 0.306 0.5190.336 0.664 0.637 0.676 0.651 0.401 0.579 0.416 0.638 0.3980.566 0.424 0.671 0.200 0.568 0.418 0.356 0.540 0.169 0.349]Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.667, per category = [ 0.854 0.625 0.734 0.775 0.898 0.854 0.879 0.590 0.578 0.5790.869 0.777 0.706 0.406 0.639 0.921 0.852 0.856 0.832 0.8480.898 0.910 0.925 0.899 0.339 0.683 0.363 0.644 0.740 0.9090.574 0.618 0.746 0.735 0.630 0.707 0.791 0.698 0.822 0.6230.654 0.657 0.637 0.442 0.377 0.609 0.466 0.378 0.566 0.5120.446 0.417 0.639 0.797 0.714 0.650 0.529 0.634 0.498 0.6580.469 0.794 0.813 0.806 0.831 0.597 0.737 0.622 0.767 0.5520.713 0.644 0.780 0.380 0.781 0.591 0.479 0.698 0.216 0.496]Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.536, per category = [ 0.660 0.353 0.531 0.537 0.822 0.799 0.812 0.481 0.303 0.3120.802 0.742 0.564 0.315 0.447 0.836 0.778 0.730 0.664 0.7060.790 0.833 0.841 0.791 0.199 0.510 0.219 0.462 0.585 0.8600.268 0.515 0.592 0.572 0.416 0.461 0.621 0.500 0.626 0.4880.465 0.547 0.500 0.291 0.291 0.525 0.333 0.298 0.476 0.4260.268 0.302 0.501 0.680 0.615 0.497 0.365 0.536 0.341 0.5270.351 0.729 0.715 0.741 0.775 0.480 0.635 0.446 0.738 0.4120.713 0.417 0.746 0.187 0.634 0.437 0.363 0.579 0.200 0.428]Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.327, per category = [ 0.409 0.223 0.388 0.338 0.704 0.394 0.449 0.238 0.246 0.2670.448 0.346 0.263 0.184 0.315 0.396 0.494 0.351 0.438 0.5310.516 0.681 0.612 0.457 0.206 0.302 0.185 0.324 0.383 0.6660.292 0.332 0.482 0.519 0.410 0.382 0.461 0.315 0.478 0.3260.279 0.333 0.301 0.204 0.244 0.263 0.159 0.095 0.121 0.2270.154 0.204 0.314 0.385 0.423 0.324 0.255 0.131 0.195 0.0290.055 0.069 0.332 0.194 0.546 0.349 0.284 0.288 0.250 0.1130.532 0.296 0.800 0.164 0.459 0.275 0.115 0.176 0.131 0.309]Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.524, per category = [ 0.675 0.427 0.637 0.456 0.735 0.578 0.348 0.455 0.370 0.5120.722 0.729 0.459 0.263 0.619 0.763 0.726 0.645 0.647 0.6750.661 0.781 0.722 0.770 0.189 0.514 0.288 0.554 0.510 0.8170.416 0.688 0.806 0.556 0.465 0.503 0.693 0.537 0.638 0.5880.589 0.620 0.629 0.456 0.354 0.517 0.333 0.441 0.276 0.4330.303 0.359 0.599 0.511 0.614 0.505 0.387 0.382 0.372 0.1970.199 0.573 0.608 0.573 0.752 0.561 0.583 0.545 0.614 0.3250.538 0.484 0.415 0.292 0.678 0.490 0.465 0.496 0.279 0.403]Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.630, per category = [ 0.796 0.650 0.734 0.659 0.784 0.864 0.767 0.572 0.507 0.6130.856 0.961 0.780 0.492 0.817 0.813 0.760 0.809 0.720 0.7790.789 0.810 0.849 0.778 0.274 0.621 0.155 0.701 0.742 0.8940.221 0.541 0.686 0.421 0.027 0.583 0.548 0.664 0.575 0.6970.789 0.729 0.594 0.423 0.440 0.639 0.543 0.438 0.576 0.6010.285 0.342 0.603 0.732 0.817 0.539 0.484 0.563 0.324 0.5540.470 0.734 0.748 0.807 0.802 0.634 0.684 0.692 0.783 0.4900.824 0.485 0.740 0.401 0.619 0.650 0.535 0.704 0.482 0.830]Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.379, per category = [ 0.205 0.289 0.192 0.299 0.583 0.562 0.668 0.396 0.158 0.1460.680 0.719 0.427 0.290 0.215 0.769 0.664 0.400 0.141 0.1920.294 0.589 0.279 0.386 0.253 0.283 0.252 0.348 0.231 0.6150.243 0.446 0.450 0.196 0.387 0.388 0.527 0.360 0.502 0.2540.208 0.314 0.441 0.276 0.292 0.352 0.148 0.159 0.382 0.1740.110 0.111 0.262 0.429 0.149 0.273 0.188 0.522 0.271 0.5960.425 0.604 0.555 0.614 0.609 0.310 0.515 0.443 0.704 0.4440.722 0.440 0.606 0.090 0.483 0.310 0.450 0.382 0.409 0.304]Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.651, per category = [ 0.613 0.509 0.588 0.606 0.830 0.811 0.832 0.705 0.454 0.4590.819 0.816 0.725 0.508 0.445 0.902 0.861 0.738 0.608 0.6420.765 0.894 0.784 0.800 0.506 0.602 0.503 0.540 0.597 0.8130.481 0.633 0.605 0.557 0.608 0.564 0.699 0.599 0.729 0.5740.568 0.649 0.680 0.522 0.561 0.701 0.434 0.493 0.751 0.5310.417 0.435 0.634 0.725 0.577 0.577 0.512 0.789 0.577 0.7930.652 0.813 0.790 0.800 0.756 0.619 0.779 0.650 0.827 0.6650.822 0.666 0.814 0.299 0.743 0.628 0.639 0.704 0.600 0.570]Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.727, per category = [ 0.735 0.599 0.682 0.704 0.877 0.837 0.865 0.791 0.604 0.5370.824 0.820 0.792 0.612 0.599 0.909 0.869 0.809 0.766 0.7920.871 0.904 0.865 0.857 0.590 0.718 0.587 0.597 0.721 0.8230.590 0.686 0.650 0.700 0.695 0.596 0.739 0.666 0.759 0.6820.643 0.734 0.718 0.592 0.624 0.767 0.659 0.640 0.792 0.6940.626 0.609 0.742 0.792 0.748 0.733 0.658 0.848 0.651 0.8450.718 0.857 0.803 0.832 0.759 0.682 0.783 0.672 0.827 0.7060.822 0.707 0.850 0.526 0.764 0.709 0.650 0.769 0.709 0.607]Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.563, per category = [ 0.575 0.433 0.587 0.553 0.777 0.550 0.675 0.662 0.490 0.4910.648 0.644 0.619 0.435 0.486 0.625 0.616 0.627 0.630 0.6780.753 0.840 0.717 0.677 0.522 0.532 0.483 0.475 0.561 0.7520.510 0.542 0.612 0.648 0.609 0.531 0.597 0.524 0.644 0.5940.516 0.611 0.574 0.502 0.517 0.592 0.490 0.460 0.372 0.5200.431 0.492 0.536 0.581 0.631 0.544 0.518 0.344 0.491 0.7000.305 0.386 0.533 0.565 0.660 0.619 0.394 0.534 0.525 0.3400.900 0.502 0.800 0.449 0.666 0.565 0.362 0.428 0.600 0.556]Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.767, per category = [ 0.800 0.687 0.812 0.684 0.879 0.768 0.656 0.795 0.663 0.7100.823 0.833 0.762 0.650 0.799 0.832 0.868 0.793 0.791 0.8300.821 0.846 0.838 0.831 0.686 0.750 0.728 0.757 0.747 0.9200.805 0.904 0.933 0.815 0.808 0.710 0.838 0.727 0.802 0.8050.764 0.836 0.829 0.761 0.834 0.790 0.682 0.744 0.754 0.7370.632 0.705 0.800 0.759 0.801 0.756 0.708 0.759 0.688 0.4640.598 0.768 0.786 0.734 0.845 0.853 0.782 0.809 0.824 0.6350.760 0.751 0.750 0.721 0.837 0.785 0.767 0.739 0.633 0.661]Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.883, per category = [ 0.900 0.852 0.919 0.825 0.919 0.933 0.892 0.899 0.867 0.8680.932 0.985 0.939 0.815 0.933 0.934 0.905 0.916 0.889 0.9310.920 0.925 0.945 0.924 0.650 0.905 0.790 0.905 0.882 0.9380.975 0.780 0.757 0.814 0.800 0.633 0.900 0.879 0.958 0.9170.929 0.908 0.932 0.838 0.857 0.922 0.881 0.887 0.910 0.8940.769 0.762 0.900 0.882 0.952 0.878 0.882 0.897 0.813 0.8820.885 0.917 0.890 0.933 0.922 0.893 0.907 0.939 0.900 0.7950.900 0.848 0.879 0.832 0.864 0.916 0.843 0.914 0.967 0.900]
相关文章:

DINO-DETR在COCO缩减数据集上实验结果分析
博主在进行DINO-DETR模型实验时,使用缩减后的COCO数据集进行训练,发现其mAP值只能达到0.27作用,故而修改了下pycocotool的代码,令其输出每个类别的AP值,来看看是由于什么原因导致这个问题。 之所以这样是因为博主认为各…...
语聊房app源码及架构设计
语音社交产品技术架构设计 语音社交产品的技术架构设计是产品开发中非常重要的一环。在设计时需要考虑产品的功能、性能、可靠性等多个方面,同时也需要与产品策划与设计相协调。以下是语音社交产品技术架构设计的主要内容。 架构设计原则 在设计语音社交产品的技…...

什么是软件测试?5分钟带你快速了解!
经常有人问我,你的公司是做什么的?我回答“软件测试”,看着对方一脸的迷茫。何为软件测试?软件测试究竟测试什么?一、软件测试的定义和意义软件测试是伴随着软件工程的重要组成部分,是软件质量保证的重要前…...

[3D游戏开发实践] Cocos Cyberpunk 源码解读-手把手教你新增一个后效Shader
Cocos Cyberpunk 是 Cocos 引擎官方团队以展示引擎重度 3D 游戏制作能力,提升社区学习动力而推出的完整开源 TPS 3D游戏,支持 Web, IOS, Android 多端发布。 本系列文章将从各个方面对源码进行解读,提升大家的学习效率。希望能够帮助大家在 …...

构建产品帮助中心,促进SaaS企业的进步
长期来看,保留现有客户比获取新客户更为关键,因此建立良好的客户服务质量需要着重关注客户心理状态。 什么是 SaaS SaaS是软件即服务(Software as a Service)的缩写。它是一种软件交付模式,其中软件应用程序托管在云计…...
【Qt】Qt单元测试详解(四):Google Test
1、创建测试工程 【Qt】Qt单元测试详解(一):通过QtCreator创建测试工程 2、添加测试代码 2.1 默认生成的代码 1)项目工程pro include(gtest_dependency.pri)TEMPLATE = app CONFIG += console c++14 CONFIG -= app_bundle CONFIG += thread CONFIG -= qtHEADERS += \t…...

容器引擎Docker的常用命令
一.镜像相关命令 1.搜索镜像 可使用 docker search命令搜索存放在 Docker Hub中的镜像。执行该命令后, Docker就会在Docker Hub中搜索含有 java这个关键词的镜像仓库 docker search java以上列表包含五列,含义如下: NAME:镜像仓库名称。D…...

vue尚品汇商城项目-day01【3.项目路由的分析】
文章目录本人其他相关文章链接安装命令:cnpm install --save vue-router vue-router 前端所谓路由:kv键值对 key:URL(地址栏中的路径) value:相应的路由组件 注意:本项目是上中下结构 路由组件: Home首页路由组件、Search路由组件…...

详解--高级IO
文章目录前言一、五种IO模型阻塞IO非阻塞IO信号驱动IOIO多路转接:异步IO二、高级IO同步通信和异步通信阻塞 VS 非阻塞其他高级IO三、非阻塞IOfcntl实现函数SetNoBlock总结前言 理解五种IO模型的基本概念.重点是IO多路转接. 正文开始! 一、五种IO模型 IO: 等 数据拷贝 read/…...
Android自定义闹钟
google推荐方式3种: 一、AlarmManager setRepeating() 重复闹钟。1、Android 4.4(API 级别 19)开始,所有重复闹钟都是不精确的,延时2分钟左右。2、闹钟触发的待定 Intent。当您设置使用同一待定 Intent 的第二个闹钟…...

第02章_MySQL环境搭建
第02章_MySQL环境搭建 🏠个人主页:shark-Gao 🧑个人简介:大家好,我是shark-Gao,一个想要与大家共同进步的男人😉😉 🎉目前状况:23届毕业生,目前…...
java使用线程池和Future接口实现异步的实例
线程池可以提供线程的复用和管理,避免线程频繁创建和销毁的开销。而Future接口则可以获取异步任务的执行结果和状态,避免了阻塞等待异步任务完成的情况。下面是一个简单的示例代码: import java.util.concurrent.*;public class AsyncExample…...

cocosCreator 事件系统
概述: DOM的输入事件通过CCInputManager转化成cocos的输入事件,由CCEventManager 分发给监听器。 监听器在通过回调函数(begin/move/end/cancel)告知事件派发对象(eventTarget)派发事件。 重要类: event࿱…...
刷题_20:字符串反转 and 公共子串计算
一.字符串反转 题目链接: 字符串反转 题目描述: 接受一个只包含小写字母的字符串,然后输出该字符串反转后的字符串。(字符串长度不超过1000) 输入描述: 输入一行,为一个只包含小写字母的字符串…...

如何在 Linux 命令行中比较两个目录,我教你五个命令!
在 Linux 命令行中比较两个目录是一项常见的任务,特别是当你需要确保两个目录之间的文件完全相同时。在本文中,我们将介绍一些在 Linux 命令行中比较两个目录的方法。 方法一:使用 diff 命令比较两个目录 diff 命令可以比较两个文件或目录之…...

多元算力如何满足万千本土化场景需求,解析第四代至强核心加速器设计
作者 | 宋慧 出品 | CSDN 云计算 2023 年初,英特尔重磅发布了企业级芯片领域重要的产品——第四代英特尔 至强 可扩展处理器。当时报道中,我们就重点提到了其中重要的七大内置加速器,这也是英特尔为千行百业多种创新场景去提供算力支持的底气…...
SPI主模式切换为从模式
一、SPI主模式切换为从模式在SPI总线上,要将主设备转换为从设备或者将从设备转换为主设备,需要通过改变SPI控制寄存器的配置来实现。下面分别介绍SPI主模式切换为从模式的步骤:配置从设备的SPI控制寄存器首先需要配置从设备的SPI控制寄存器。…...

IMX6ULL学习笔记(21)——MMDC接口使用(DDR3测试)
一、MMDC简介 MMDC 接口与 STM32 的 FSMC 接口类似,只不过 MMDC 接口专用于外接 DDR,并且 MMDC 外部引脚不复用。MMDC 是一个多模的 DDR 控制器,可以连接 16 位宽的 DDR3/DDR3L、16 位宽的 LPDDR2。 MMDC 是一个可配置、高性能的 DDR 控制器。…...
机器学习——无监督学习
机器学习的分类一般分为下面几种类别:监督学习( supervised Learning )无监督学习( Unsupervised Learning )强化学习( Reinforcement Learning,增强学习)半监督学习( Semi-supervised Learning )深度学习(Deep Learning)Python Scikit-learn. http: // …...

python+opencv生成较真实的车牌号码图片
本文参考github代码:https://github.com/loveandhope/license-plate-generator 效果: 一、代码目录结构: background目录下存放各种背景图片 font目录下存放车牌中文、字符的ttf字体 images目录下存放蓝色底牌、新能源绿色底牌、污渍&#…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...