深度学习03-神经网络01-什么是神经网络?






神经网络的基本概念
-
人工神经网络(Artificial Neural Network,ANN):
-
是一种模仿生物神经网络的计算模型。由多个神经元(或称为节点)组成,这些节点通过不同的连接来传递信息。
-
每个神经元可以接收来自其他神经元的信息,经过加权和激活函数的处理后,再将信息传递到下一个神经元。
-
神经元的结构
在人工神经网络中,每个神经元都通过公式来处理输入信息并生成输出。神经元的核心组成部分包括:
-
输入(Input):来自前一层的输入数据。
-
加权求和:每个输入都会乘以一个权重(
w),加上偏置项(b)。 -
激活函数(Activation Function):对加权和的结果进行非线性变换,使得模型能够处理复杂的非线性关系。常见的激活函数包括 Sigmoid、ReLU 和 Tanh。
-
输出(Output):经过激活函数处理后的值,作为传递到下一层的输入。
公式表达: 其中,(x_i) 是输入,(w_i) 是权重,(b) 是偏置项,激活函数 (f(x)) 用来引入非线性。
神经网络的层次结构
-
输入层(Input Layer):
-
输入层的神经元接收外界输入数据。这些数据可以是图像的像素值、文本的词向量等。输入层本身不做任何处理,只是将输入信息传递到下一个层。
-
-
隐藏层(Hidden Layer):
-
隐藏层是神经网络的中间层,它负责对输入数据进行复杂的特征提取。一个神经网络可以包含多个隐藏层,每个隐藏层都对前一层的输出进行处理。
-
每个隐藏层的神经元通过权重与前一层的神经元连接,并使用激活函数将线性变换结果转化为非线性输出。
-
-
输出层(Output Layer):
-
输出层的神经元数量取决于任务类型,例如,回归任务可能只有一个输出节点,而分类任务则有多个输出节点,表示不同的类别。
-
输出层的输出经过处理后用于做出最终的预测。
-
全连接神经网络(Fully Connected Neural Network)
我们可以看到一个全连接神经网络的结构示意图:
-
全连接(Fully Connected):在全连接网络中,当前层的每个神经元都会与下一层的每个神经元进行连接。这意味着每个神经元的输出都会影响下一层所有神经元的输入。
-
层与层之间的连接:输入层连接到隐藏层,隐藏层再连接到输出层。每一层的输出都作为下一层的输入。
特点:
-
前向传播:信息从输入层经过隐藏层逐层传递到输出层。
-
输入层 -> 隐藏层 -> 输出层。
-
-
每一层之间的全连接:每个神经元都会通过特定的权重连接到下一层的所有神经元,称为全连接层。
-
激活函数的作用:隐藏层中通常会使用激活函数引入非线性,使得网络能够学习到复杂的映射关系。
-
权重和偏置:每个神经元的输出都取决于输入、权重和偏置,通过反向传播和梯度下降,神经网络会调整这些参数以最小化损失函数。
可以使用这个进行跳转链接到谷歌的神经网络可视化网站
http://playground.tensorflow.org/#activation=relu&batchSize=11&dataset=spiral®Dataset=reg-gauss&learningRate=0.01®ularizationRate=0.1&noise=0&networkShape=7,5,4,3,2&seed=0.54477&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


从一个神经网络看,这里就是两部分是我们人关注的,第一部分是我们如何进行权重参数的初始化, 第二部分我们怎么选择激活函数。

架构决定了,同一层一般是使用同一个非线性激活函数
相关文章:
深度学习03-神经网络01-什么是神经网络?
神经网络的基本概念 人工神经网络(Artificial Neural Network,ANN): 是一种模仿生物神经网络的计算模型。由多个神经元(或称为节点)组成,这些节点通过不同的连接来传递信息。 每个神经元可以接…...
Redisson 分布式锁的使用详解
一、分布式锁的概述 1.1 分布式锁的背景 在单机系统中,Java 提供了 synchronized 和 Lock 等锁机制来确保并发情况下的线程安全。然而,在分布式系统中,多个服务实例运行在不同的物理或虚拟机上,无法直接使用这些本地的锁机制来控…...
计算机网络:物理层 --- 基本概念、编码与调制
目录 一. 物理层的基本概念 二. 数据通信系统的模型 三. 编码 3.1 基本概念 3.2 不归零制编码 3.3 归零制编码 3.4 曼切斯特编码 3.5 差分曼切斯特编码 编辑 四. 调制 4.1 调幅 4.2 调频 4.3 调相 4.4 混合调制 今天我们讲的是物理…...
使用Maven创建一个Java项目并在repository中使用
JDK环境:1.8.0_371 Maven环境 :Apache Maven 3.6.3 配置完成jdk和mvn后,进入到指定文件夹下执行如下语句: mvn archetype:generate -DgroupIdtop.chengrongyu -DartifactIdCyberSpace -DarchetypeArtifactIdmaven-archetype-quic…...
如何使用IIC外设(硬件IIC)
本文重点叙述如何使用芯片自带的 IIC 外设,即硬件 IIC,实现 IIC 通信。文章《IIC通信基础_cpu的iic通信-CSDN博客》 中,叙述了软件 IIC 通信和硬件 IIC 通信的区别, 并且重点叙述了 IIC 的通信协议。在使用软件进行 IIC 通信时&am…...
使用 Vue 3、Vite 和 TypeScript 的环境变量配置
使用 Vue 3、Vite 和 TypeScript 的环境变量配置 在开发现代前端应用时,环境变量是一个非常重要的概念。它可以帮助我们根据不同的环境(开发、测试、生产)配置不同的行为,比如 API 请求地址、调试选项等。在 Vue 3、Vite 和 Type…...
F28335 的串行外设接口(以下简称 SPI)
1 SPI 介绍 1.1 SPI 简介 1.2 F28335 的 SPI模块介绍 (1)F28335 的 SPI 特点...
科技引领未来生活——“光影漫游者”展览馆应用—轻空间
随着科技的快速发展,展览馆作为展示文化、科技和艺术的场所,正逐渐从传统的静态展示向高科技互动体验转变。由轻空间打造的“光影漫游者”展览馆,凭借其前沿的气承式结构和智能化系统,将参观者带入了一个未来感十足、充满科技魅力…...
ego-planner开源代码之启动参数介绍分析
ego-planner开源代码之启动参数介绍&分析 1. 源由2. 逻辑分析3. 启动参数section 1 三维地图尺寸section 2 里程计话题映射section 3 advanced_param.xml配置section 3.1section 3.2section 3.3section 3.4section 3.5section 3.6section 3.7section 3.8 section 4 轨迹服务…...
828 华为云征文|华为 Flexus 云服务器打造 Laverna 在线笔记应用
一、引言 在当今数字化时代,高效的笔记管理工具对于学习、工作和生活都至关重要。Laverna 作为一款功能强大的开源在线笔记应用,提供了 Markdown 编辑、加密支持等特性,是替代 Evernote 的绝佳选择。在 2024 年 9 月 14 日这个充满创新的日子…...
数据结构与算法-Trie树添加与搜索
trie树的使用场景 我们若需要制作一个通讯录的软件,使用常规树结构查询的复杂度为O(logn),但trie树的复杂度确与数据多少无关,与单词长度有关,这就大大缩减的查询的时间复杂度。 trie树的基本实现 基础结构 package com.study.trieDemo;i…...
AIGC专栏15——CogVideoX-Fun详解 支持图文生视频 拓展CogVideoX到256~1024任意分辨率生成
AIGC专栏15——CogVideoX-Fun详解 支持图&文生视频 拓展CogVideoX到256~1024任意分辨率生成 学习前言项目特点生成效果相关地址汇总源码下载地址 CogVideoX-Fun详解技术储备Diffusion Transformer (DiT)Stable Diffusion 3EasyAnimate-I2V 算法细节算法组成InPa…...
BFS 解决多源最短路问题
文章目录 多源BFS542. 01 矩阵题目解析算法原理代码实现 1020. 飞地的数量题目解析算法原理 1765. 地图中的最高点题目解析算法原理代码实现 1162. 地图分析题目解析算法原理代码实现 多源BFS 单源最短路: 一个起点、一个终点 多源最短路: 可以多个起点…...
论文笔记:交替单模态适应的多模态表征学习
整理了CVPR2024 Multimodal Representation Learning by Alternating Unimodal Adaptation)论文的阅读笔记 背景MLA框架实验Q1 与之前的方法相比,MLA能否克服模态懒惰并提高多模态学习性能?Q2 MLA在面临模式缺失的挑战时表现如何?Q3 所有模块是否可以有…...
鸿蒙OS 线程间通信
鸿蒙OS 线程间通信概述 在开发过程中,开发者经常需要在当前线程中处理下载任务等较为耗时的操作,但是又不希望当前的线程受到阻塞。此时,就可以使用 EventHandler 机制。EventHandler 是 HarmonyOS 用于处理线程间通信的一种机制,…...
执行 npm报错 Cannot find module ‘../lib/cli.js‘
报错 /usr/local/node/node-v18.20.4-linux-x64/bin/npm node:internal/modules/cjs/loader:1143 throw err; ^ Error: Cannot find module ../lib/cli.js Require stack: - /usr/local/node/node-v18.20.4-linux-x64/bin/npm at Module._resolveFilename (node:inter…...
基于SpringBoot+Vue+MySQL的国产动漫网站
系统展示 用户前台界面 管理员后台界面 系统背景 随着国内动漫产业的蓬勃发展和互联网技术的快速进步,动漫爱好者们对高质量、个性化的国产动漫内容需求日益增长。然而,市场上现有的动漫平台大多以国外动漫为主,对国产动漫的推广和展示存在不…...
AUTOSAR汽车电子嵌入式编程精讲300篇-基于CAN总线的气动控制
目录 前言 知识储备 什么是气动控制: 气动控制基础知识 一、气动元件 二、气路设计 三、气动控制系统 气动控制系统构成图 气动控制系统基本组成功能图 几种常见的气动执行元件实物图 常用气动压力控制阀实物图 常用气动流动控制阀实物图 电磁控制换向发实物图 部…...
Ubuntu 20.04 内核升级后网络丢失问题的解决过程
在 Ubuntu 系统中,内核升级是一个常见的操作,旨在提升系统性能、安全性和兼容性。然而,有时这一操作可能会带来一些意外的副作用,比如导致网络功能的丧失。 本人本来是想更新 Nvidia 显卡的驱动,使用 ubuntu-drivers …...
论文解读《LaMP: When Large Language Models Meet Personalization》
引言:因为导师喊我围绕 “大语言模型的个性化、风格化生成” 展开研究,所以我就找相关论文,最后通过 ACL 官网找到这篇,感觉还不错,就开始解读吧! “说是解读,其实大部分都是翻译哈哈哈&#x…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
