当前位置: 首页 > news >正文

深度学习03-神经网络01-什么是神经网络?

神经网络的基本概念

  1. 人工神经网络(Artificial Neural Network,ANN)

    • 是一种模仿生物神经网络的计算模型。由多个神经元(或称为节点)组成,这些节点通过不同的连接来传递信息。

    • 每个神经元可以接收来自其他神经元的信息,经过加权和激活函数的处理后,再将信息传递到下一个神经元。

神经元的结构

在人工神经网络中,每个神经元都通过公式来处理输入信息并生成输出。神经元的核心组成部分包括:

  • 输入(Input):来自前一层的输入数据。

  • 加权求和:每个输入都会乘以一个权重(w),加上偏置项(b)。

  • 激活函数(Activation Function):对加权和的结果进行非线性变换,使得模型能够处理复杂的非线性关系。常见的激活函数包括 Sigmoid、ReLU 和 Tanh。

  • 输出(Output):经过激活函数处理后的值,作为传递到下一层的输入。

公式表达: [ f(x) = \text{Activation Function} \left( b + \sum_{i=1}^{n} x_i w_i \right) ]  其中,(x_i) 是输入,(w_i) 是权重,(b) 是偏置项,激活函数 (f(x)) 用来引入非线性。

神经网络的层次结构

  1. 输入层(Input Layer)

    • 输入层的神经元接收外界输入数据。这些数据可以是图像的像素值、文本的词向量等。输入层本身不做任何处理,只是将输入信息传递到下一个层。

  2. 隐藏层(Hidden Layer)

    • 隐藏层是神经网络的中间层,它负责对输入数据进行复杂的特征提取。一个神经网络可以包含多个隐藏层,每个隐藏层都对前一层的输出进行处理。

    • 每个隐藏层的神经元通过权重与前一层的神经元连接,并使用激活函数将线性变换结果转化为非线性输出。

  3. 输出层(Output Layer)

    • 输出层的神经元数量取决于任务类型,例如,回归任务可能只有一个输出节点,而分类任务则有多个输出节点,表示不同的类别。

    • 输出层的输出经过处理后用于做出最终的预测。

全连接神经网络(Fully Connected Neural Network)

我们可以看到一个全连接神经网络的结构示意图:

  • 全连接(Fully Connected):在全连接网络中,当前层的每个神经元都会与下一层的每个神经元进行连接。这意味着每个神经元的输出都会影响下一层所有神经元的输入。

  • 层与层之间的连接:输入层连接到隐藏层,隐藏层再连接到输出层。每一层的输出都作为下一层的输入。

特点:

  1. 前向传播:信息从输入层经过隐藏层逐层传递到输出层。

    • 输入层 -> 隐藏层 -> 输出层。

  2. 每一层之间的全连接:每个神经元都会通过特定的权重连接到下一层的所有神经元,称为全连接层。

  3. 激活函数的作用:隐藏层中通常会使用激活函数引入非线性,使得网络能够学习到复杂的映射关系。

  4. 权重和偏置:每个神经元的输出都取决于输入、权重和偏置,通过反向传播和梯度下降,神经网络会调整这些参数以最小化损失函数。

可以使用这个进行跳转链接到谷歌的神经网络可视化网站

http://playground.tensorflow.org/#activation=relu&batchSize=11&dataset=spiral&regDataset=reg-gauss&learningRate=0.01&regularizationRate=0.1&noise=0&networkShape=7,5,4,3,2&seed=0.54477&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

从一个神经网络看,这里就是两部分是我们人关注的,第一部分是我们如何进行权重参数的初始化, 第二部分我们怎么选择激活函数。

架构决定了,同一层一般是使用同一个非线性激活函数

相关文章:

深度学习03-神经网络01-什么是神经网络?

神经网络的基本概念 人工神经网络(Artificial Neural Network,ANN): 是一种模仿生物神经网络的计算模型。由多个神经元(或称为节点)组成,这些节点通过不同的连接来传递信息。 每个神经元可以接…...

Redisson 分布式锁的使用详解

一、分布式锁的概述 1.1 分布式锁的背景 在单机系统中,Java 提供了 synchronized 和 Lock 等锁机制来确保并发情况下的线程安全。然而,在分布式系统中,多个服务实例运行在不同的物理或虚拟机上,无法直接使用这些本地的锁机制来控…...

计算机网络:物理层 --- 基本概念、编码与调制

目录 一. 物理层的基本概念 二. 数据通信系统的模型 三. 编码 3.1 基本概念 3.2 不归零制编码 3.3 归零制编码 3.4 曼切斯特编码 3.5 差分曼切斯特编码 ​编辑 四. 调制 4.1 调幅 4.2 调频 4.3 调相 4.4 混合调制 今天我们讲的是物理…...

使用Maven创建一个Java项目并在repository中使用

JDK环境:1.8.0_371 Maven环境 :Apache Maven 3.6.3 配置完成jdk和mvn后,进入到指定文件夹下执行如下语句: mvn archetype:generate -DgroupIdtop.chengrongyu -DartifactIdCyberSpace -DarchetypeArtifactIdmaven-archetype-quic…...

如何使用IIC外设(硬件IIC)

本文重点叙述如何使用芯片自带的 IIC 外设,即硬件 IIC,实现 IIC 通信。文章《IIC通信基础_cpu的iic通信-CSDN博客》 中,叙述了软件 IIC 通信和硬件 IIC 通信的区别, 并且重点叙述了 IIC 的通信协议。在使用软件进行 IIC 通信时&am…...

使用 Vue 3、Vite 和 TypeScript 的环境变量配置

使用 Vue 3、Vite 和 TypeScript 的环境变量配置 在开发现代前端应用时,环境变量是一个非常重要的概念。它可以帮助我们根据不同的环境(开发、测试、生产)配置不同的行为,比如 API 请求地址、调试选项等。在 Vue 3、Vite 和 Type…...

F28335 的串行外设接口(以下简称 SPI)

1 SPI 介绍 1.1 SPI 简介 1.2 F28335 的 SPI模块介绍 (1)F28335 的 SPI 特点...

科技引领未来生活——“光影漫游者”展览馆应用—轻空间

随着科技的快速发展,展览馆作为展示文化、科技和艺术的场所,正逐渐从传统的静态展示向高科技互动体验转变。由轻空间打造的“光影漫游者”展览馆,凭借其前沿的气承式结构和智能化系统,将参观者带入了一个未来感十足、充满科技魅力…...

ego-planner开源代码之启动参数介绍分析

ego-planner开源代码之启动参数介绍&分析 1. 源由2. 逻辑分析3. 启动参数section 1 三维地图尺寸section 2 里程计话题映射section 3 advanced_param.xml配置section 3.1section 3.2section 3.3section 3.4section 3.5section 3.6section 3.7section 3.8 section 4 轨迹服务…...

828 华为云征文|华为 Flexus 云服务器打造 Laverna 在线笔记应用

一、引言 在当今数字化时代,高效的笔记管理工具对于学习、工作和生活都至关重要。Laverna 作为一款功能强大的开源在线笔记应用,提供了 Markdown 编辑、加密支持等特性,是替代 Evernote 的绝佳选择。在 2024 年 9 月 14 日这个充满创新的日子…...

数据结构与算法-Trie树添加与搜索

trie树的使用场景 我们若需要制作一个通讯录的软件,使用常规树结构查询的复杂度为O(logn),但trie树的复杂度确与数据多少无关,与单词长度有关,这就大大缩减的查询的时间复杂度。 trie树的基本实现 基础结构 package com.study.trieDemo;i…...

AIGC专栏15——CogVideoX-Fun详解 支持图文生视频 拓展CogVideoX到256~1024任意分辨率生成

AIGC专栏15——CogVideoX-Fun详解 支持图&文生视频 拓展CogVideoX到256~1024任意分辨率生成 学习前言项目特点生成效果相关地址汇总源码下载地址 CogVideoX-Fun详解技术储备Diffusion Transformer (DiT)Stable Diffusion 3EasyAnimate-I2V 算法细节算法组成InPa…...

BFS 解决多源最短路问题

文章目录 多源BFS542. 01 矩阵题目解析算法原理代码实现 1020. 飞地的数量题目解析算法原理 1765. 地图中的最高点题目解析算法原理代码实现 1162. 地图分析题目解析算法原理代码实现 多源BFS 单源最短路: 一个起点、一个终点 多源最短路: 可以多个起点…...

论文笔记:交替单模态适应的多模态表征学习

整理了CVPR2024 Multimodal Representation Learning by Alternating Unimodal Adaptation)论文的阅读笔记 背景MLA框架实验Q1 与之前的方法相比,MLA能否克服模态懒惰并提高多模态学习性能?Q2 MLA在面临模式缺失的挑战时表现如何?Q3 所有模块是否可以有…...

鸿蒙OS 线程间通信

鸿蒙OS 线程间通信概述 在开发过程中,开发者经常需要在当前线程中处理下载任务等较为耗时的操作,但是又不希望当前的线程受到阻塞。此时,就可以使用 EventHandler 机制。EventHandler 是 HarmonyOS 用于处理线程间通信的一种机制&#xff0c…...

执行 npm报错 Cannot find module ‘../lib/cli.js‘

报错 /usr/local/node/node-v18.20.4-linux-x64/bin/npm node:internal/modules/cjs/loader:1143 throw err; ^ Error: Cannot find module ../lib/cli.js Require stack: - /usr/local/node/node-v18.20.4-linux-x64/bin/npm at Module._resolveFilename (node:inter…...

基于SpringBoot+Vue+MySQL的国产动漫网站

系统展示 用户前台界面 管理员后台界面 系统背景 随着国内动漫产业的蓬勃发展和互联网技术的快速进步,动漫爱好者们对高质量、个性化的国产动漫内容需求日益增长。然而,市场上现有的动漫平台大多以国外动漫为主,对国产动漫的推广和展示存在不…...

AUTOSAR汽车电子嵌入式编程精讲300篇-基于CAN总线的气动控制

目录 前言 知识储备 什么是气动控制: 气动控制基础知识 一、气动元件 二、气路设计 三、气动控制系统 气动控制系统构成图 气动控制系统基本组成功能图 几种常见的气动执行元件实物图 常用气动压力控制阀实物图 常用气动流动控制阀实物图 电磁控制换向发实物图 部…...

Ubuntu 20.04 内核升级后网络丢失问题的解决过程

在 Ubuntu 系统中,内核升级是一个常见的操作,旨在提升系统性能、安全性和兼容性。然而,有时这一操作可能会带来一些意外的副作用,比如导致网络功能的丧失。 本人本来是想更新 Nvidia 显卡的驱动,使用 ubuntu-drivers …...

论文解读《LaMP: When Large Language Models Meet Personalization》

引言:因为导师喊我围绕 “大语言模型的个性化、风格化生成” 展开研究,所以我就找相关论文,最后通过 ACL 官网找到这篇,感觉还不错,就开始解读吧! “说是解读,其实大部分都是翻译哈哈哈&#x…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

centos 7 部署awstats 网站访问检测

一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

什么是EULA和DPA

文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...