atcoder abc372 启发式合并, dp
A delete
代码:
#include <bits.stdc++.h>using namespace std;int main() {string s;cin >> s;for(auto t: s) if(t != '.') cout << t;
}
B 3 ^ A
思路:三进制转换,可以参考二进制,先把当前可以加入的最大的3的幂次加入,这样一定可以凑出答案
代码:
#include <bits/stdc++.h>using namespace std;int main() {int n;cin >> n;vector<int> a;int tmp = n;while(tmp) {int l = 0, r = 10;while(l < r) {int mid = l + r + 1 >> 1;if(pow(3, mid) <= tmp) l = mid;else r = mid - 1;}tmp -= pow(3, l);a.push_back(l);}cout << a.size() << endl;for(auto t: a) cout << t << " ";return 0;
}
C Count ABC Again
思路:判断当前变化的位置对结果是否会产生影响,在询问前先计算有多少ABC, 每次变换位置x前后扫描一下[x - 2, x + 2]范围内是否有ABC,变换前有让cnt --, 变换后有让cnt ++
代码:
#include <bits/stdc++.h>
using namespace std;int main() {int n, q;cin >> n >> q;vector<char> s(n + 1);for(int i = 1; i <= n; i ++ ) cin >> s[i];int cnt = 0;for(int i = 3; i <= n; i ++ )if(s[i - 2] == 'A' && s[i - 1] == 'B' && s[i] == 'C')cnt ++;while(q -- ) {int x;char c;cin >> x >> c;string t;t += s[max(1, x - 2)];t += s[max(1, x - 1)];t += s[x];string t1;t1 += s[max(1, x - 1)];t1 += s[x];t1 += s[min(n, x + 1)];string t2;t2 += s[x];t2 += s[min(n, x + 1)];t2 += s[min(n, x + 2)];if(t1 == "ABC" || t2 == "ABC" || t == "ABC") cnt --;s[x] = c;t = s[max(1, x - 2)];t += s[max(1, x - 1)];t += s[x];t1 = s[max(1, x - 1)];t1 += s[x];t1 += s[min(n, x + 1)];t2 = s[x];t2 += s[min(n, x + 1)];t2 += s[min(n, x + 2)];if(t1 == "ABC" || t2 == "ABC" || t == "ABC") cnt ++;cout << cnt << "\n";}return 0;
}
D buildings
思路:首先对于每个点i,我们可以很容易用单调栈求出第一个大于该点的位置j,因此点i只有在(j + 1, i)这个区间内对答案有贡献, 这里可以用差分的方式计算贡献
代码:
#include <bits/stdc++.h>
using namespace std;int main() {int n;cin >> n;vector<int> a(n + 1);a[0] = 0x3f3f3f3f;for(int i = 1; i <= n; i ++ ) cin >> a[i];vector<int> pos(n + 1);stack<int> stk;stk.push(0);for(int i = 1; i <= n; i ++ ) {while(a[stk.top()] <= a[i]) stk.pop();pos[i] = stk.top();stk.push(i);}vector<int> ans(n + 1);for(int i = 1; i <= n; i ++ ) {ans[pos[i]] += 1;ans[i] -= 1;}for(int i = 1; i <= n; i ++ ) {ans[i] += ans[i - 1];cout << ans[i] << " ";}return 0;
}
E K-th Largest Connected Components
思路:注意到k很小,因此在查询的时候可以直接遍历。现在考虑如何存数据。可以用并查集合并两个集合,并且在合并的时候一定要将小的集合合并到大的集合中去,因为小集合合并到大集合中,最后的集合一定大于小集合元素数量的两倍,因此合并的时间复杂度不会超过logn
代码:
#include <bits/stdc++.h>
using namespace std;const int N = 2e5 + 10;struct node {int num;priority_queue<int> q;/*bool operator += (node W) const {while(!W.q.empty()) {q.push(W.q.top());W.q.pop();}}*/
}_size[N];
int p[N];int find(int x) {if(x != p[x]) {p[x] = find(p[x]);} return p[x];
}int main() {int n, q;cin >> n >> q;for(int i = 1; i <= n; i ++ ) {p[i] = i;_size[i].num = 1;_size[i].q.push(i);}while(q -- ) {int op;cin >> op;if(op == 1) {int u, v;cin >> u >> v;int pu = find(u);int pv = find(v);if(pu != pv) {if(_size[pu].num >= _size[pv].num){while(!_size[pv].q.empty()) {_size[pu].q.push(_size[pv].q.top());_size[pv].q.pop();}_size[pu].num += _size[pv].num;p[pv] = pu;} else {while(!_size[pu].q.empty()) {_size[pv].q.push(_size[pu].q.top());_size[pu].q.pop();}_size[pv].num += _size[pu].num;p[pu] = pv;}}} else {int k, v;cin >> v >> k;auto q1 = _size[find(v)].q;for(int i = 1; i <= k - 1 && !q1.empty(); i ++ ) {q1.pop();}if(!q1.empty()) cout << q1.top() << endl;else cout << -1 << endl;}}return 0;
}
/*
2
1
-1
4
2
-1
*/
这里留下个疑问
int k, v;cin >> v >> k;auto q1 = _size[find(v)].q;for(int i = 1; i <= k - 1 && !q1.empty(); i ++ ) {q1.pop();}if(!q1.empty()) cout << q1.top() << endl;else cout << -1 << endl;
为什么在查询时直接查询_size[p[v]]答案会出错,是路径压缩不彻底的原因吗
F
相关文章:
atcoder abc372 启发式合并, dp
A delete 代码: #include <bits.stdc.h>using namespace std;int main() {string s;cin >> s;for(auto t: s) if(t ! .) cout << t; } B 3 ^ A 思路:三进制转换,可以参考二进制,先把当前可以加入的最大的3的…...
CentOS Stream 9部署MariaDB
1、更新系统软件包 sudo dnf update 2、安装MariaDB软件包(替代mysql) sudo dnf install mariadb-server 3、安装MariaDB服务 sudo systemctl enable --now mariadb 4、检查MariaDB服务状态 sudo systemctl status mariadb 5、配置MariaDB安全性 sudo my…...
【Leetcode:997. 找到小镇的法官 + 入度出度】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
大数据Flink(一百二十三):五分钟上手Flink MySQL连接器
文章目录 五分钟上手Flink MySQL连接器 一、创建数据库表 二、创建session集群 三、源表查询 四、窗口计算 五、结果数据写回数据库 五分钟上手Flink MySQL连接器 MySQL Connector可以将本地或远程的MySQL数据库连接到Flink中&#x…...
SYN Flood攻击原理,SYN Cookie算法
SYN Flood是一种非常危险而常见的Dos攻击方式。到目前为止,能够有效防范SYN Flood攻击的手段并不多,SYN Cookie就是其中最著名的一种。 1. SYN Flood攻击原理 SYN Flood攻击是一种典型的拒绝服务(Denial of Service)攻击。所谓的拒绝服务攻击就是通过进…...
计组(蒋)期末速成笔记1
蒋本珊计组期末不挂科复习笔记 第1章 概论 第2章 数据的机器层次表示 第3章 指令系统 第4章 数值的机器运算 第5章 存储系统和结构 第6章 中央处理器 第7章 总线 第1章 概论 蒋本珊计组期末不挂科复习笔记知道你快考试了,莫慌! 第1章 概论1.1 冯诺依曼计…...
mysql学习教程,从入门到精通,SQL 更新数据(UPDATE 语句)(17)
1、SQL 更新数据(UPDATE 语句) SQL UPDATE 需要指定要更新的表、要修改的列以及新值,并且通常会通过WHERE子句来指定哪些行需要被更新。下面是一个简单的示例,说明如何使用UPDATE语句。 假设我们有一个名为employees的表…...
【吊打面试官系列-MySQL面试题】MyISAM 表格将在哪里存储,并且还提供其存储格式?
大家好,我是锋哥。今天分享关于【MyISAM 表格将在哪里存储,并且还提供其存储格式?】面试题,希望对大家有帮助; MyISAM 表格将在哪里存储,并且还提供其存储格式? 每个 MyISAM 表格以三种格式存储…...
常用的图像增强的算法之间的联系和区别
Unsharp Mask (USM)、拉普拉斯算子、直方图均衡化和伽马增强是图像处理中常见的技术,但它们在原理、作用和应用场景上有显著不同。以下是对这些方法的详细比较: 1. Unsharp Mask (USM) 原理:USM 是通过对图像进行模糊处理(如高斯…...
SpringBoot+Vue考试系统免费分享
源码说明: 这是一个开源的SpringBoot与Vue开发的在线考试系统。经过站长测试,系统稳定可用,允许重复考试。 环境: 需要安装的环境包括Node.js v14.21.3、JDK8、Maven以及MySQL 5.7。 前端部署教程: 执行 npm inst…...
音视频入门基础:FLV专题(1)——FLV官方文档下载
一、FLV简介 Flash Video(简称FLV),是一种网络视频格式,用作流媒体格式,它的出现有效地解决了视频文件导入Flash后,使导出的SWF文件体积庞大,不能在网络上有效使用等缺点。 一般FLV文件包在SW…...
使用c#制作一个小型桌面程序
封装dll 首先使用visual stdio 创建Dll新项目,然后属性管理器导入自己的工程属性表(如果没有可以参考visual stdio 如何配置opencv等其他环境) 创建完成后 系统会自动生成一些文件,其中 pch.cpp 先不要修改,pch.h中先导入自己需…...
Clip studio paint百度云下载:附安装包+教程
首先补一个介绍,Clip Studio Paint(即CSP):这是一款专业的绘画和漫画创作软件,拥有丰富的绘画工具,适合漫画创作者使用。其界面友好,工具齐全,能够满足漫画创作中的各种需求。 用过…...
从Yargs源码学习中间件的设计
yargs中间件介绍 yargs 是一个用于解析命令行参数的流行库,它能帮助开发者轻松地定义 CLI(命令行接口),并提供参数处理、命令组织、help文本自动生成等功能。今天我们来学习一下它对中间件的支持。 中间件的API详细信息࿰…...
高级I/O知识分享【epoll || Reactor ET,LT模式】
博客主页:花果山~程序猿-CSDN博客 文章分栏:Linux_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一,接口 epo…...
Matlab 的.m 文件批量转成py文件
在工作中碰到了一个问题,需要将原来用matlab gui做出来的程序改为python程序,因为涉及到很多文件,所以在网上搜了搜有没有直接能转化的库。参考了【Matlab】一键Matlab代码转python代码详细教程_matlab2python-CSDN博客 这位博主提到的matla…...
【软考】传输层协议TCP与UDP
目录 1. TCP1.1 说明1.2 三次握手 2. UDP3. 例题3.1 例题1 1. TCP 1.1 说明 1.TCP(Transmission Control Protocol,传输控制协议)是整个 TCP/IP 协议族中最重要的协议之一。2.它在IP提供的不可靠数据服务的基础上为应用程序提供了一个可靠的、面向连接的、全双工的…...
Arthas dashboard(当前系统的实时数据面板)
文章目录 二、命令列表2.1 jvm相关命令2.1.1 dashboard(当前系统的实时数据面板) 二、命令列表 2.1 jvm相关命令 2.1.1 dashboard(当前系统的实时数据面板) 使用场景: 在 Arthas 中,dashboard 命令用于提…...
微服务保护之熔断降级
在微服务架构中,服务之间的调用是通过网络进行的,网络的不确定性和依赖服务的不可控性,可能导致某个服务出现异常或性能问题,进而引发整个系统的故障,这被称为 微服务雪崩。为了防止这种情况发生,常用的一些…...
TomCat乱码问题
TomCat控制台乱码问题 乱码问题解决: 响应乱码问题 向客户端响应数据: package Servlet;import jakarta.servlet.ServletException; import jakarta.servlet.annotation.WebServlet; import jakarta.servlet.http.HttpServlet; import jakarta.servl…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...
