当前位置: 首页 > news >正文

故障诊断│GWO-DBN灰狼算法优化深度置信网络故障诊断

1.引言

随着人工智能技术的快速发展,深度学习已经成为解决复杂问题的热门方法之一。深度置信网络(DBN)作为深度学习中应用比较广泛的一种算法,被广泛应用于分类和回归预测等问题中。然而,DBN的训练过程通常需要大量的时间和计算资源,因此如何提高DBN的训练效率成为一个重要的研究方向。

近年来,灰狼算法(Grey Wolf Optimizer,GWO)作为一种新兴的优化算法,受到了广泛的关注。GWO模拟了灰狼群体的捕食行为,通过模拟狼群的协作和竞争来优化问题的解。

为此,本文将灰狼算法 (GWO)与深度置信网络 (DBN) 相结合,采用GWO-DBN 结合智能算法与深度学习模型进行多输入多输出分类识别(故障诊断),具有以下特点:

准确性高:GWO 算法可以有效地优化 DBN 模型的参数,提高故障诊断的准确性。

鲁棒性强:DBN 模型可以捕获数据中的非线性模式,并对扰动和异常值具有较强的鲁棒性。

实现效果好:GWO-DBN 算法的识别效果相对较好,易于理解,已成功应用于电力、医疗等多个领域,应用效果较好。

为此,本文将灰狼算法 (GWO)与深度置信网络 (DBN) 相结合,采用GWO-DBN 结合智能算法与深度学习模型进行多输入多输出分类识别(故障诊断)。

2.原理详解

GWO-DBN 算法的原理如下:

1.数据预处理: 对数据进行标准化、缺失值处理等操作。

2.深度置信网络 (DBN) 构建: 构建 DBN 模型,包括多个受限玻尔兹曼机 (RBM) 层。

3.灰狼算法优化: 使用灰狼算法优化 DBN 模型的超参数(各隐藏层神经元个数,迭代次数和学习率),提高模型识别性能。

3.部分实现代码

%%  划分数据集

for i = 1 : num_class

   mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本

   mid_size = size(mid_res, 1);                    % 得到不同类别样本个数

   mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

   P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入

   T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

   P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入

   T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出

end

%%  优化算法

[Best_score,Best_pos, curve] = GWO(pop, Max_iteration, lb, ub, dim, fun);

%%  模型预训练

Best_pos(1: 3)=round(Best_pos(1: 3));

dbn.sizes = Best_pos(1: 3);             % 隐藏层节点

opts.numepochs = 300;                   % 训练次数

opts.batchsize = M;                     % 每次训练样本个数

opts.momentum  = 0;                     % 学习率的动量

opts.alpha     = 0.01;                  % 学习率

dbn = dbnsetup(dbn, p_train, opts);     % 建立模型

dbn = dbntrain(dbn, p_train, opts);     % 训练模型

4. 实现结果展示

故障诊断│GWO-DBN灰狼算法优化深度置信网络分类预测(Matlab代码,评估指标全,出图多)随着人工智能技术的快速发展,深度学习已经成为解决复杂问题的热门方法之一。深度置信网络(DBN)作为深度学习中应用比较广泛的一种算法,被广泛应用于分类和回归预测等问题中。然而,DBN的训练过程通常需要大量的时间和计算资源,因此如何提高DBN的训练效率成为一个重要的研究方向。近年来,icon-default.png?t=O83Ahttps://mbd.pub/o/bread/ZpmZk5Zt

相关文章:

故障诊断│GWO-DBN灰狼算法优化深度置信网络故障诊断

1.引言 随着人工智能技术的快速发展,深度学习已经成为解决复杂问题的热门方法之一。深度置信网络(DBN)作为深度学习中应用比较广泛的一种算法,被广泛应用于分类和回归预测等问题中。然而,DBN的训练过程通常需要大量的…...

【工具】Windows|两款开源桌面窗口管理小工具Deskpins和WindowTop

总结 Deskpins 功能单一,拖到窗口上窗口就可以置顶并且标记钉子标签,大小 104 KB,开源位置:https://github.com/thewhitegrizzli/DeskPins/releases WindowTop 功能完善全面强大,包括透明度、置顶、选区置顶等一系列功…...

【Unity杂谈】iOS 18中文字体显示问题的调查

一、问题现象 最近苹果iOS 18系统正式版推送,周围升级系统的同事越来越多,有些同事发现,iOS 18上很多游戏(尤其是海外游戏)的中文版,显示的字很奇怪,就像一些字被“吞掉了”,无法显示…...

后端-navicat查找语句(单表与多表)

表格字段设置如图 语句&#xff1a; 1.输出 1.输出name和age列 SELECT name,age from student 1.2.全部输出 select * from student 2.where子语句 1.运算符&#xff1a; 等于 >大于 >大于等于 <小于 <小于等于 ! <>不等于 select * from stude…...

基于springboot的在线视频点播系统

文未可获取一份本项目的java源码和数据库参考。 国外研究现状&#xff1a; 与传统媒体不同的是&#xff0c;新媒体在理念和应用上都采用了新颖的媒介或媒体。新媒体是指应用在数字技术、在传统媒体基础上改造、或者更新换代而来的媒介或媒体。新兴媒体与传统媒体在理念和应用…...

笔记整理—内核!启动!—kernel部分(8)动态编译链接库与BSP文件

linux的C语言程序是用编译的&#xff0c;但是如果要在开发板上运行的话就不能使用默认的ubuntu提供的gcc编译器&#xff0c;而是使用arm-linux版本的一类的编译器。我们可以用file xx去查看一个程序的架构。 &#xff08;arm架构&#xff09; &#xff08;intel的80386架构&…...

Cpp类和对象(中续)(5)

文章目录 前言一、赋值运算符重载运算符重载赋值运算符重载赋值运算符不可重载为全局函数前置和后置的重载 二、const修饰成员函数三、取地址及const取地址操作符重载四、日期类的实现构造函数日期 天数日期 天数日期 - 天数日期 - 天数日期类的大小比较日期类 > 日期类日…...

深度学习02-pytorch-01-张量的创建

深度学习 pytorch 框架 是目前最热门的。 深度学习 pytorch 框架相当于 机器学习阶段的 numpy sklearn 它将数据封装成张量(Tensor)来进行处理&#xff0c;其实就是数组。也就是numpy 里面的 ndarray . pip install torch1.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simp…...

pg入门9—pg中的extentions是什么

在 PostgreSQL&#xff08;PG&#xff09;中&#xff0c;Extension&#xff08;扩展&#xff09; 是一组预先打包的功能模块&#xff0c;可以轻松地添加到数据库中以扩展其功能。这些扩展通常包含新的数据类型、函数、索引方法、操作符以及其他数据库增强功能。通过扩展&#x…...

JAVA:Nginx(轻量级的Web服务器、反向代理服务器)--(1)

一、Nginx:起因 nginx为什么为开发出来,起因是什么 总述:NGINX 的开发起因源于上世纪 90 年代末至 2000 年代初的互联网快速发展。当时,互联网流量急剧增长,特别是像 Apache 这样的传统 Web 服务器在高并发连接处理方面开始显现出瓶颈。 举例子:Apache 的 "每个连接…...

互斥锁和自旋锁

1、锁&#xff1a; 自旋锁与‌互斥锁的区别主要体现在以下几个方面&#xff1a; 1. 实现方式 ‌互斥锁‌&#xff1a;属于‌sleep-waiting类型的锁。当一个线程尝试获取已被其他线程持有的互斥锁时&#xff0c;该线程会被阻塞&#xff08;进入睡眠状态&#xff09;&#xff…...

救生圈检测系统源码分享

救生圈检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Visio…...

容器技术--Dockerfile 构建镜像

Dockerfile dockerfile 是一系列命令&参数构成的脚本,这些命令应用于基础镜像,最终创建一个新的镜像,可以提供一致的运行环境。【也可以登录容器,自己安装软件,最后commit为镜像】 命令 FROM 指定基础镜像(必须),如FROM ubuntu;每一个指令就生成一层镜像;RUN 运…...

Hive企业级调优[5]—— HQL语法优化之数据倾斜

目录 HQL语法优化之数据倾斜 数据倾斜概述 分组聚合导致的数据倾斜 优化说明 优化案例 Join导致的数据倾斜 优化说明 优化案例 HQL语法优化之数据倾斜 数据倾斜概述 数据倾斜问题通常指的是参与计算的数据分布不均&#xff0c;即某个key或某些key的数据量远超其他key&#xff…...

表示速度的speed与velocity语义辨析

speed 对应的中文是 速度, 比如 5KM/h, 但是语义中不带方向&#xff0c;所以一般用来表示标量(scalar)。velocity 对应的中文也是 速度, 比如 5KM/h, 语义中蕴含了方向&#xff0c; 常用于表示向量(vector)。 2024年09月22日...

Electron 图标修改

目录 1. 图片基本要求 2. 在main.js中配置icon 位置 ​3. 在package.json 中配置icon 位置 4. 问题&#xff1a;左上角图片 开发环境下显示&#xff0c;生产环境下不显示 1. 图片基本要求 图片格式为ico&#xff0c;图片像素像素为256*256&#xff1b; 将ico文件放在pub…...

项目扩展二:消息拉取功能的实现

项目扩展二&#xff1a;消息拉取功能的实现 一、回顾一下消息推送功能是如何实现的二、设计消息拉取功能1.服务器如何处理2.定义Request和Response1.定义Request2.proto文件 三、服务器实现消息拉取1.业务模块的实现&#xff1a;信道模块2.消费者管理模块实现O(1)获取消费者1.目…...

C语言6大常用标准库 -- 4.<math.h>

目录 引言 4. C标准库--math.h 4.1 简介 4.2 库变量 4.3 库宏 4.4 库函数 4.5 常用的数学常量 &#x1f308;你好呀&#xff01;我是 程序猿 &#x1f30c; 2024感谢你的陪伴与支持 ~ &#x1f680; 欢迎一起踏上探险之旅&#xff0c;挖掘无限可能&#xff0c;共同成长&…...

【图像匹配】基于SIFT算法的图像匹配,matlab实现

博主简介&#xff1a;matlab图像代码项目合作&#xff08;扣扣&#xff1a;3249726188&#xff09; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本次案例是基于基于SIFT算法的图像匹配&#xff0c;用matlab实现。 一、案例背景和算法介绍 本…...

C++门迷宫

目录 开头程序程序的流程图程序游玩的效果下一篇博客要说的东西 开头 大家好&#xff0c;我叫这是我58。 程序 #include <iostream> using namespace std; void printmaze(const char strmaze[11][11]) {int i 0;int ia 0;for (; i < 11; i) {for (ia 0; ia <…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...