Mysql梳理7——分页查询
目录
7、分页查询
7.1 背景
7.2 实现规则
分页原理
7.3 使用 LIMIT 的好处
7、分页查询
7.1 背景
背景1:查询返回的记录太多了,查看起来很不方便,怎么样能够实现分页查询呢?
背景2:表里有 4 条数据,我们只想要显示第 2、3 条数据怎么办呢?
7.2 实现规则
-
分页原理
所谓分页显示,就是将数据库中的结果集,一段一段显示出来需要的条件。
MySQL中使用 LIMIT 实现分页
格式:
LIMIT [位置偏移量,] 行数
第一个“位置偏移量”参数指示MySQL从哪一行开始显示,是一个可选参数,如果不指定“位置偏移 量”,将会从表中的第一条记录开始(第一条记录的位置偏移量是0,第二条记录的位置偏移量是 1,以此类推);第二个参数“行数”指示返回的记录条数。
SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id, salary DESC;
LIMIT [位置偏移量,] 行数--前10条记录:
SELECT * FROM 表名 LIMIT 0,10;
或者
SELECT * FROM 表名 LIMIT 10;
--第11至20条记录:
SELECT * FROM 表名 LIMIT 10,10;
--第21至30条记录:
SELECT * FROM 表名 LIMIT 20,10;
注意:MySQL 8.0中可以使用“LIMIT 3 OFFSET 4”,意思是获取从第5条记录开始后面的3条记录,和“LIMIT 4,3;”返回的结果相同。
重要! 分页显示公式:(当前页数-1)*每页条数,每页条数
SELECT * FROM table
LIMIT(PageNo - 1)*PageSize,PageSize;
注意:LIMIT 子句必须放在整个SELECT语句的最后!
7.3 使用 LIMIT 的好处
约束返回结果的数量可以减少数据表的网络传输量 ,也可以 提升查询效率 。
如果我们知道返回结果只有 1 条,就可以使用 LIMIT 1 ,告诉 SELECT 语句只需要返回一条记录即可。
这样的好处就是SELECT不需要扫描完整的表,只需要检索到一条符合条件的记录即可返回。
相关文章:
Mysql梳理7——分页查询
目录 7、分页查询 7.1 背景 7.2 实现规则 分页原理 7.3 使用 LIMIT 的好处 7、分页查询 7.1 背景 背景1:查询返回的记录太多了,查看起来很不方便,怎么样能够实现分页查询呢? 背景2:表里有 4 条数据,…...
智能制造与工业互联网公益联播∣企企通副总经理杨华:AI的浪潮下,未来智慧供应链迭代方向
近两年在IT圈子里面,AI毫无疑问是最火的一个词语,最近的ChatGPT、文心一言、通义千问,从千亿参数到万亿参数,再往前就是Sora文生视频异军突起... 在人工智能的浪潮下,AI之于供应链的价值体现在哪些地方?其发…...
《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理
文章目录 一、卷积神经网络的简单介绍二、工作原理(还未写完)1.输入层2.卷积层3.池化层4.全连接层5.输出层 一、卷积神经网络的简单介绍 基本概念 定义:卷积神经网络是一种深度学习模型,通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想…...
数据结构:线性表
1、线性表概述 1.1线性表的定义 线性表(list):零个或多个数据元素的有限序列。 简单地来说,我们可以用下面这张图来描述一个线性表: 1.2 线性表的存储结构 1.2.1顺序存储结构——顺序表 顺序表是将数据全部存储到…...
Ansible PlayBook实践案例
一、PlayBook介绍 1.什么是playbook playbook 顾名思义,即剧本,现实生活中演员按照剧本表演,在 ansible 中,由被控计算机表演,进行安装,部署应用,提供对外的服务等,以及组织计算机处理各种各样…...
Tomcat后台弱口令部署war包
1.环境搭建 cd /vulhub/tomcat/tomcat8 docker-compose up -d 一键启动容器 2.访问靶场 点击Manager App tomcat8的默认用户名和密码都是tomcat进行登录 3.制作war包 先写一个js的一句话木马 然后压缩成zip压缩包 最后修改后缀名为war 4.在网站后台上传war文件 上传war文件…...
胤娲科技:DeepMind的FermiNet——带你穿越“薛定谔的早餐桌”
当AI遇上量子迷雾,FermiNet成了你的“量子导航仪” 想象一下,你早晨醒来,发现家里的厨房变成了薛定谔的实验室,你的咖啡杯和吐司同时处于“存在与不存在”的叠加态。 你伸手去拿,却不确定会不会摸到冰冷的空气或是热腾…...
迅为iTOP-STM32MP157开发板板载4G接口(选配)_千兆以太网_WIFI蓝牙模块_HDMI_CAN_RS485_LVDS接口等
迅为ITOP-STM32MP157是基于ST的STM32MP157芯片开发的一款开发平台。在STM32MP157开发平台上,我们也做了比较多的创新,其中重要的一点就是,iTOP-STM32MP157核心板电源管理采用ST全新配套研制的PMIC电源管理芯片STPMU1A。为整个系统的稳定运行提…...
Android Choreographer 监控应用 FPS
Choreographer 是 Android 提供的一个强大的工具类,用于协调动画、绘制和视图更新的时间。它的主要作用是协调应用的绘制过程,以确保流畅的用户体验。Choreographer 也可以帮助我们获取帧时间信息,从而为性能监测和优化提供重要的数据支持。 …...
关于 mybatis-plus-boot-starter 与 mybatis-spring-boot-starter 的错误
不是知道你是否 出现过这样的错误 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 经过各种度娘,无非就是让你检查三种情况 情况一:mapper.xml没有按照传统的maven架构进行放置 情况二:mybatis的配置信…...
NLP 文本分类任务核心梳理
解决思路 分解为多个独立二分类任务将多标签分类转化为多分类问题更换 loss 直接由模型进行多标签分类 数据稀疏问题 标注更多数据,核心解决方案: 自己构造训练样本 数据增强,如使用 chatGPT 来构造数据更换模型 减少数据需求增加规则弥补…...
k8s中pod的创建过程和阶段状态
管理k8s集群 kubectl k8s中有两种用户 一种是登录的 一种是/sbin/nologin linux可以用密码登录,也可以用证书登录 k8s只能用证书登录 谁拿到这个证书,谁就可以管理集群 在k8s中,所有节点都被网络组件calico设置了路由和通信 所以pod的ip是可以…...
NSSCTF刷题篇1
js类型 [SWPUCTF 2022 新生赛]js_sign 这是一道js信息泄露的题目直接查看源码,有一个main.js文件点击之后,有一串数字和一段base64编码,解开base64编码得到这个编码为敲击码 解码在线网站:Tap Code - 许愿星 (wishingstarmoye.…...
[数据集][目标检测]棉花叶子病害检测数据集VOC+YOLO格式977张22类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):977 标注数量(xml文件个数):977 标注数量(txt文件个数):977 标注类别…...
产品经理面试整理-常见面试问题
以下是一些常见的产品经理面试问题及其解答思路。这些问题涵盖了产品管理的各个方面,包括战略、执行、数据分析、用户体验、跨团队合作等。在准备这些问题时,使用结构化的回答方式(如STAR法)能够帮助你更好地表达你的观点和经验。 1. 常见产品经理面试问题 1.1 你如何定义用…...
数据库(选择题)
基本概念 数据库(DB):长期存储在计算机内的、有组织的、可共享的数据集合。 数据库管理系统(DBMS):它是数据库的机构,是一个系统软件,负责数据库中的数据组织、数据操纵、数据维护…...
粒子向上持续瀑布动画效果(直接粘贴到记事本改html即可)
代码: 根据个人喜好修改即可 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>宽粒子向上…...
卷积神经网络(CNN):深度学习中的视觉奇迹
目录 一、什么是卷积神经网络? 二、CNN的核心组件 1. 卷积层(Convolutional Layer) 2. 激活函数(Activation Function) 3. 池化层(Pooling Layer) 4. 全连接层(Fully Connected…...
Vue:加载本地视频
目录 封装视频弹框调用视频组件 封装视频弹框 <template><el-dialog class"videoBox" :title"title" :visible.sync"visible" width"40%" :before-close"handleOnClose" :close-on-click-modal"false" …...
论文阅读:A Generalization of Transformer Networks to Graphs
论文阅读:A Generalization of Transformer Networks to Graphs 论文地址1 摘要2 贡献Graph TransformerOn Graph Sparsity(图稀疏)On Positional Encodings(位置编码)3 Graph Transformer Architecture(架…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
2025-05-08-deepseek本地化部署
title: 2025-05-08-deepseek 本地化部署 tags: 深度学习 程序开发 2025-05-08-deepseek 本地化部署 参考博客 本地部署 DeepSeek:小白也能轻松搞定! 如何给本地部署的 DeepSeek 投喂数据,让他更懂你 [实验目的]:理解系统架构与原…...
Python的__call__ 方法
在 Python 中,__call__ 是一个特殊的魔术方法(magic method),它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时(例如 obj()),Python 会自动调用该对象的 __call__ 方法…...
