当前位置: 首页 > news >正文

算法打卡:第十一章 图论part01

今日收获:图论理论基础,深搜理论基础,所有可达路径,广搜理论基础(理论来自代码随想录)

1. 图论理论基础

(1)邻接矩阵

邻接矩阵存储图,x和y轴的坐标表示节点的个数

优点:

  • 表达方式简单,易于理解
  • 易于检查两个顶点间是否存在边
  • 适合稠密图,此时邻接矩阵是一种空间效率较高的表示方法,矩阵中的格子利用率高。

缺点:

  • 遇到稀疏图,会导致申请过大的二维数组造成空间浪费。
  • 遍历边的时候需要遍历整个n * n矩阵,造成时间浪费。

(2)邻接表

邻接表使用 数组 + 链表 的方式来表示。数组的长度是节点个数,节点的边用链表连接。

 优点:

  • 对于稀疏图的存储,只需要存储边,空间利用率高
  • 遍历节点连接情况相对容易

缺点:

  • 检查任意两个节点间是否存在边,效率相对低,需要遍历数组中某个节点连接的整个链表
  • 实现相对复杂,不易理解

(3)图的遍历方式

  • 深度优先搜索(dfs)
  • 广度优先搜索(bfs)

2. 深搜理论基础

(1)思想

        一条道走到黑,不到黄河不死心,不撞南墙不回头(走投无路或者找到了就回到上一个节点再重复,即回溯)

(2)代码框架

void dfs(参数) {if (终止条件) {存放结果;return;}for (选择:本节点所连接的其他节点) {处理节点;dfs(图,选择的节点); // 递归回溯,撤销处理结果}
}

3. 所有可达路径

题目链接:98. 所有可达路径

思路:回溯算法

(1)邻接矩阵

a. 首先根据节点的个数创建二维数组,然后遍历节点之间的边,如果存在边则二维数组对应位置设为1。

b. 在回溯函数中,遍历所有的节点,如果当前所处的节点位置和遍历节点之间存在边,则将当前遍历节点添加到路径中,递归调用回溯函数,函数结束后取消路径中的当前遍历节点

c. 如果当前所处的节点位置是终点,则收获结果

import java.util.Scanner;
import java.util.ArrayList;
import java.util.List;public class Main{static List<List<Integer>> result=new ArrayList<>();static List<Integer> path=new ArrayList<>();public static void main(String[] args){Scanner sc=new Scanner(System.in);int N=sc.nextInt();int M=sc.nextInt();// 存储图的邻接矩阵int[][] graph=new int[N+1][N+1];for (int i=0;i<M;i++){int s=sc.nextInt();int t=sc.nextInt();graph[s][t]=1;}path.add(1);  // 出发点dfs(graph,1,N);  // 开始深度搜索// 输出结果if (result.size()==0){System.out.println("-1");}else {for (List<Integer> pa:result){for (int i=0;i<pa.size()-1;i++){System.out.print(pa.get(i)+" ");}System.out.println(pa.get(pa.size()-1));}}}public static void dfs(int[][] graph,int current,int N){if (current==N){  // 走到终点result.add(new ArrayList<>(path));return;}for (int i=1;i<N+1;i++){  // 从小到大遍历节点if (graph[current][i]==1){  // 存在边path.add(i);  // 走到下一个节点dfs(graph,i,N);path.remove(path.size()-1);  // 回溯}}}}

(2)邻接表

a. 首先创建存储整型链表的列表作为图,将列表中的每个节点都添加一个链表。遍历边时,将结尾节点添加到列表中起点的链表中。

b. 回溯函数中,遍历当前所处位置节点的连接节点时,获取其链表,然后再遍历链表中的元素

import java.util.Scanner;
import java.util.ArrayList;
import java.util.List;
import java.util.LinkedList;public class Main{static List<List<Integer>> result=new ArrayList<>();static List<Integer> path=new ArrayList<>();public static void main(String[] args){Scanner sc=new Scanner(System.in);int N=sc.nextInt();int M=sc.nextInt();// 存储图的邻接表List<LinkedList<Integer>> graph=new ArrayList<>(N+1);for (int i=0;i<N+1;i++){graph.add(new LinkedList<Integer>());}for (int i=0;i<M;i++){int s=sc.nextInt();int t=sc.nextInt();graph.get(s).add(t);}path.add(1);  // 出发点dfs(graph,1,N);  // 开始深度搜索// 输出结果if (result.size()==0){System.out.println("-1");}else {for (List<Integer> pa:result){for (int i=0;i<pa.size()-1;i++){System.out.print(pa.get(i)+" ");}System.out.println(pa.get(pa.size()-1));}}}public static void dfs(List<LinkedList<Integer>> graph,int current,int N){if (current==N){  // 走到终点result.add(new ArrayList<>(path));return;}for (int i:graph.get(current)){  // 从小到大遍历节点path.add(i);  // 走到下一个节点dfs(graph,i,N);path.remove(path.size()-1);  // 回溯}}}

总结:打印二维数组最好使用增强for循环遍历

(3)相似题目

题目链接:797. - 力扣(LeetCode)

思路:回溯算法。首先添加起点0,当前位置也为0,然后遍历当前位置连接的节点,将连接节点加入路径列表中再调用函数深度搜索;当前连接节点上的路径深度搜索之后,去掉路径列表中的当前节点。

方法:

class Solution {List<List<Integer>> result=new ArrayList<>();List<Integer> path=new ArrayList<>();public List<List<Integer>> allPathsSourceTarget(int[][] graph) {int n=graph.length-1;path.add(0);dfs(graph,0,n);return result;}public void dfs(int[][] graph,int current,int n){if (current==n){result.add(new ArrayList<>(path));return;}for (int i:graph[current]){path.add(i);dfs(graph,i,n);path.remove(path.size()-1);}}
}

4. 广搜理论基础

思想:一圈一圈的搜索,每次遍历当前节点连接的所有节点

使用场景:解决两点之间的最短路径问题

解决方式:用队列/栈/数组,只要能保存遍历过的元素。用队列时,先加入起始节点并标记为访问;然后遍历队列,计算当前节点的连接节点,如果连接节点没有被访问过则加入队列。

相关文章:

算法打卡:第十一章 图论part01

今日收获&#xff1a;图论理论基础&#xff0c;深搜理论基础&#xff0c;所有可达路径&#xff0c;广搜理论基础&#xff08;理论来自代码随想录&#xff09; 1. 图论理论基础 &#xff08;1&#xff09;邻接矩阵 邻接矩阵存储图&#xff0c;x和y轴的坐标表示节点的个数 优点…...

为C#的PetaPoco组件增加一个批量更新功能(临时表模式)

总有一些数据是需要批量更新的&#xff0c;并且更新的字段&#xff0c;每个数据都不一样。 为了实现这样一个功能&#xff0c;写了这样一个方法&#xff1a; using System.Linq.Expressions; using System.Reflection; using System.Text; using NetRube.Data; using PetaPoc…...

Spring实战——入门讲解

​ 博客主页: 南来_北往 系列专栏&#xff1a;Spring Boot实战 Spring介绍 Spring实战的入门讲解主要涵盖了Spring框架的基本概念、核心功能以及应用场景。以下是关于Spring实战入门的具体介绍&#xff1a; Spring框架概述&#xff1a;Spring是一个轻量级的Java开发框架…...

MTK芯片机型的“工程固件” 红米note9 5G版资源预览 写入以及改写参数相关步骤解析

小米机型:小米5 小米5x 米6 米6x 米8 米9 米10系列 米11系列 米12系列 mix mix2 mix2s mix3 max max2 max3 note3 8se 9se cc9系列 米play 平板系列等分享 红米机型:红米note4 红米note4x 红米note5 红米note6 红米note7 红米note8 红米note8pro 红米s2 红米note7pro 红米…...

[Golang] Context

[Golang] Context 文章目录 [Golang] Context什么是context创建context创建根context创建context context的作用并发控制context.WithCancelcontext.WithDeadlinecontext.WithTimeoutcontext.WithValue 什么是context Golang在1.7版本中引入了一个标准库的接口context&#xf…...

【JAVA集合总结-壹】

文章目录 synchronized 的实现原理以及锁优化&#xff1f;ThreadLocal原理&#xff0c;使用注意点&#xff0c;应用场景有哪些&#xff1f;synchronized和ReentrantLock的区别&#xff1f;说说CountDownLatch与CyclicBarrier 区别Fork/Join框架的理解为什么我们调用start()方法…...

Mysql梳理7——分页查询

目录 7、分页查询 7.1 背景 7.2 实现规则 分页原理 7.3 使用 LIMIT 的好处 7、分页查询 7.1 背景 背景1&#xff1a;查询返回的记录太多了&#xff0c;查看起来很不方便&#xff0c;怎么样能够实现分页查询呢&#xff1f; 背景2&#xff1a;表里有 4 条数据&#xff0c…...

智能制造与工业互联网公益联播∣企企通副总经理杨华:AI的浪潮下,未来智慧供应链迭代方向

近两年在IT圈子里面&#xff0c;AI毫无疑问是最火的一个词语&#xff0c;最近的ChatGPT、文心一言、通义千问&#xff0c;从千亿参数到万亿参数&#xff0c;再往前就是Sora文生视频异军突起... 在人工智能的浪潮下&#xff0c;AI之于供应链的价值体现在哪些地方&#xff1f;其发…...

《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理

文章目录 一、卷积神经网络的简单介绍二、工作原理(还未写完)1.输入层2.卷积层3.池化层4.全连接层5.输出层 一、卷积神经网络的简单介绍 基本概念 定义&#xff1a;卷积神经网络是一种深度学习模型&#xff0c;通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想…...

数据结构:线性表

1、线性表概述 1.1线性表的定义 线性表&#xff08;list&#xff09;&#xff1a;零个或多个数据元素的有限序列。 简单地来说&#xff0c;我们可以用下面这张图来描述一个线性表&#xff1a; 1.2 线性表的存储结构 1.2.1顺序存储结构——顺序表 顺序表是将数据全部存储到…...

Ansible PlayBook实践案例

一、PlayBook介绍 1.什么是playbook playbook 顾名思义&#xff0c;即剧本&#xff0c;现实生活中演员按照剧本表演&#xff0c;在 ansible 中&#xff0c;由被控计算机表演,进行安装&#xff0c;部署应用&#xff0c;提供对外的服务等&#xff0c;以及组织计算机处理各种各样…...

Tomcat后台弱口令部署war包

1.环境搭建 cd /vulhub/tomcat/tomcat8 docker-compose up -d 一键启动容器 2.访问靶场 点击Manager App tomcat8的默认用户名和密码都是tomcat进行登录 3.制作war包 先写一个js的一句话木马 然后压缩成zip压缩包 最后修改后缀名为war 4.在网站后台上传war文件 上传war文件…...

胤娲科技:DeepMind的FermiNet——带你穿越“薛定谔的早餐桌”

当AI遇上量子迷雾&#xff0c;FermiNet成了你的“量子导航仪” 想象一下&#xff0c;你早晨醒来&#xff0c;发现家里的厨房变成了薛定谔的实验室&#xff0c;你的咖啡杯和吐司同时处于“存在与不存在”的叠加态。 你伸手去拿&#xff0c;却不确定会不会摸到冰冷的空气或是热腾…...

迅为iTOP-STM32MP157开发板板载4G接口(选配)_千兆以太网_WIFI蓝牙模块_HDMI_CAN_RS485_LVDS接口等

迅为ITOP-STM32MP157是基于ST的STM32MP157芯片开发的一款开发平台。在STM32MP157开发平台上&#xff0c;我们也做了比较多的创新&#xff0c;其中重要的一点就是&#xff0c;iTOP-STM32MP157核心板电源管理采用ST全新配套研制的PMIC电源管理芯片STPMU1A。为整个系统的稳定运行提…...

Android Choreographer 监控应用 FPS

Choreographer 是 Android 提供的一个强大的工具类&#xff0c;用于协调动画、绘制和视图更新的时间。它的主要作用是协调应用的绘制过程&#xff0c;以确保流畅的用户体验。Choreographer 也可以帮助我们获取帧时间信息&#xff0c;从而为性能监测和优化提供重要的数据支持。 …...

关于 mybatis-plus-boot-starter 与 mybatis-spring-boot-starter 的错误

不是知道你是否 出现过这样的错误 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 经过各种度娘&#xff0c;无非就是让你检查三种情况 情况一&#xff1a;mapper.xml没有按照传统的maven架构进行放置 情况二&#xff1a;mybatis的配置信…...

NLP 文本分类任务核心梳理

解决思路 分解为多个独立二分类任务将多标签分类转化为多分类问题更换 loss 直接由模型进行多标签分类 数据稀疏问题 标注更多数据&#xff0c;核心解决方案&#xff1a; 自己构造训练样本 数据增强&#xff0c;如使用 chatGPT 来构造数据更换模型 减少数据需求增加规则弥补…...

k8s中pod的创建过程和阶段状态

管理k8s集群 kubectl k8s中有两种用户 一种是登录的 一种是/sbin/nologin linux可以用密码登录&#xff0c;也可以用证书登录 k8s只能用证书登录 谁拿到这个证书&#xff0c;谁就可以管理集群 在k8s中&#xff0c;所有节点都被网络组件calico设置了路由和通信 所以pod的ip是可以…...

NSSCTF刷题篇1

js类型 [SWPUCTF 2022 新生赛]js_sign 这是一道js信息泄露的题目直接查看源码&#xff0c;有一个main.js文件点击之后&#xff0c;有一串数字和一段base64编码&#xff0c;解开base64编码得到这个编码为敲击码 解码在线网站&#xff1a;Tap Code - 许愿星 (wishingstarmoye.…...

[数据集][目标检测]棉花叶子病害检测数据集VOC+YOLO格式977张22类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;977 标注数量(xml文件个数)&#xff1a;977 标注数量(txt文件个数)&#xff1a;977 标注类别…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...