算法打卡:第十一章 图论part01
今日收获:图论理论基础,深搜理论基础,所有可达路径,广搜理论基础(理论来自代码随想录)
1. 图论理论基础
(1)邻接矩阵
邻接矩阵存储图,x和y轴的坐标表示节点的个数

优点:
- 表达方式简单,易于理解
- 易于检查两个顶点间是否存在边
- 适合稠密图,此时邻接矩阵是一种空间效率较高的表示方法,矩阵中的格子利用率高。
缺点:
- 遇到稀疏图,会导致申请过大的二维数组造成空间浪费。
- 遍历边的时候需要遍历整个n * n矩阵,造成时间浪费。
(2)邻接表
邻接表使用 数组 + 链表 的方式来表示。数组的长度是节点个数,节点的边用链表连接。

优点:
- 对于稀疏图的存储,只需要存储边,空间利用率高
- 遍历节点连接情况相对容易
缺点:
- 检查任意两个节点间是否存在边,效率相对低,需要遍历数组中某个节点连接的整个链表
- 实现相对复杂,不易理解
(3)图的遍历方式
- 深度优先搜索(dfs)
- 广度优先搜索(bfs)
2. 深搜理论基础
(1)思想
一条道走到黑,不到黄河不死心,不撞南墙不回头(走投无路或者找到了就回到上一个节点再重复,即回溯)
(2)代码框架
void dfs(参数) {if (终止条件) {存放结果;return;}for (选择:本节点所连接的其他节点) {处理节点;dfs(图,选择的节点); // 递归回溯,撤销处理结果}
}
3. 所有可达路径
题目链接:98. 所有可达路径
思路:回溯算法
(1)邻接矩阵
a. 首先根据节点的个数创建二维数组,然后遍历节点之间的边,如果存在边则二维数组对应位置设为1。
b. 在回溯函数中,遍历所有的节点,如果当前所处的节点位置和遍历节点之间存在边,则将当前遍历节点添加到路径中,递归调用回溯函数,函数结束后取消路径中的当前遍历节点
c. 如果当前所处的节点位置是终点,则收获结果
import java.util.Scanner;
import java.util.ArrayList;
import java.util.List;public class Main{static List<List<Integer>> result=new ArrayList<>();static List<Integer> path=new ArrayList<>();public static void main(String[] args){Scanner sc=new Scanner(System.in);int N=sc.nextInt();int M=sc.nextInt();// 存储图的邻接矩阵int[][] graph=new int[N+1][N+1];for (int i=0;i<M;i++){int s=sc.nextInt();int t=sc.nextInt();graph[s][t]=1;}path.add(1); // 出发点dfs(graph,1,N); // 开始深度搜索// 输出结果if (result.size()==0){System.out.println("-1");}else {for (List<Integer> pa:result){for (int i=0;i<pa.size()-1;i++){System.out.print(pa.get(i)+" ");}System.out.println(pa.get(pa.size()-1));}}}public static void dfs(int[][] graph,int current,int N){if (current==N){ // 走到终点result.add(new ArrayList<>(path));return;}for (int i=1;i<N+1;i++){ // 从小到大遍历节点if (graph[current][i]==1){ // 存在边path.add(i); // 走到下一个节点dfs(graph,i,N);path.remove(path.size()-1); // 回溯}}}}
(2)邻接表
a. 首先创建存储整型链表的列表作为图,将列表中的每个节点都添加一个链表。遍历边时,将结尾节点添加到列表中起点的链表中。
b. 回溯函数中,遍历当前所处位置节点的连接节点时,获取其链表,然后再遍历链表中的元素
import java.util.Scanner;
import java.util.ArrayList;
import java.util.List;
import java.util.LinkedList;public class Main{static List<List<Integer>> result=new ArrayList<>();static List<Integer> path=new ArrayList<>();public static void main(String[] args){Scanner sc=new Scanner(System.in);int N=sc.nextInt();int M=sc.nextInt();// 存储图的邻接表List<LinkedList<Integer>> graph=new ArrayList<>(N+1);for (int i=0;i<N+1;i++){graph.add(new LinkedList<Integer>());}for (int i=0;i<M;i++){int s=sc.nextInt();int t=sc.nextInt();graph.get(s).add(t);}path.add(1); // 出发点dfs(graph,1,N); // 开始深度搜索// 输出结果if (result.size()==0){System.out.println("-1");}else {for (List<Integer> pa:result){for (int i=0;i<pa.size()-1;i++){System.out.print(pa.get(i)+" ");}System.out.println(pa.get(pa.size()-1));}}}public static void dfs(List<LinkedList<Integer>> graph,int current,int N){if (current==N){ // 走到终点result.add(new ArrayList<>(path));return;}for (int i:graph.get(current)){ // 从小到大遍历节点path.add(i); // 走到下一个节点dfs(graph,i,N);path.remove(path.size()-1); // 回溯}}}
总结:打印二维数组最好使用增强for循环遍历
(3)相似题目
题目链接:797. - 力扣(LeetCode)
思路:回溯算法。首先添加起点0,当前位置也为0,然后遍历当前位置连接的节点,将连接节点加入路径列表中再调用函数深度搜索;当前连接节点上的路径深度搜索之后,去掉路径列表中的当前节点。
方法:
class Solution {List<List<Integer>> result=new ArrayList<>();List<Integer> path=new ArrayList<>();public List<List<Integer>> allPathsSourceTarget(int[][] graph) {int n=graph.length-1;path.add(0);dfs(graph,0,n);return result;}public void dfs(int[][] graph,int current,int n){if (current==n){result.add(new ArrayList<>(path));return;}for (int i:graph[current]){path.add(i);dfs(graph,i,n);path.remove(path.size()-1);}}
}
4. 广搜理论基础
思想:一圈一圈的搜索,每次遍历当前节点连接的所有节点
使用场景:解决两点之间的最短路径问题
解决方式:用队列/栈/数组,只要能保存遍历过的元素。用队列时,先加入起始节点并标记为访问;然后遍历队列,计算当前节点的连接节点,如果连接节点没有被访问过则加入队列。
相关文章:
算法打卡:第十一章 图论part01
今日收获:图论理论基础,深搜理论基础,所有可达路径,广搜理论基础(理论来自代码随想录) 1. 图论理论基础 (1)邻接矩阵 邻接矩阵存储图,x和y轴的坐标表示节点的个数 优点…...
为C#的PetaPoco组件增加一个批量更新功能(临时表模式)
总有一些数据是需要批量更新的,并且更新的字段,每个数据都不一样。 为了实现这样一个功能,写了这样一个方法: using System.Linq.Expressions; using System.Reflection; using System.Text; using NetRube.Data; using PetaPoc…...
Spring实战——入门讲解
博客主页: 南来_北往 系列专栏:Spring Boot实战 Spring介绍 Spring实战的入门讲解主要涵盖了Spring框架的基本概念、核心功能以及应用场景。以下是关于Spring实战入门的具体介绍: Spring框架概述:Spring是一个轻量级的Java开发框架…...
MTK芯片机型的“工程固件” 红米note9 5G版资源预览 写入以及改写参数相关步骤解析
小米机型:小米5 小米5x 米6 米6x 米8 米9 米10系列 米11系列 米12系列 mix mix2 mix2s mix3 max max2 max3 note3 8se 9se cc9系列 米play 平板系列等分享 红米机型:红米note4 红米note4x 红米note5 红米note6 红米note7 红米note8 红米note8pro 红米s2 红米note7pro 红米…...
[Golang] Context
[Golang] Context 文章目录 [Golang] Context什么是context创建context创建根context创建context context的作用并发控制context.WithCancelcontext.WithDeadlinecontext.WithTimeoutcontext.WithValue 什么是context Golang在1.7版本中引入了一个标准库的接口context…...
【JAVA集合总结-壹】
文章目录 synchronized 的实现原理以及锁优化?ThreadLocal原理,使用注意点,应用场景有哪些?synchronized和ReentrantLock的区别?说说CountDownLatch与CyclicBarrier 区别Fork/Join框架的理解为什么我们调用start()方法…...
Mysql梳理7——分页查询
目录 7、分页查询 7.1 背景 7.2 实现规则 分页原理 7.3 使用 LIMIT 的好处 7、分页查询 7.1 背景 背景1:查询返回的记录太多了,查看起来很不方便,怎么样能够实现分页查询呢? 背景2:表里有 4 条数据,…...
智能制造与工业互联网公益联播∣企企通副总经理杨华:AI的浪潮下,未来智慧供应链迭代方向
近两年在IT圈子里面,AI毫无疑问是最火的一个词语,最近的ChatGPT、文心一言、通义千问,从千亿参数到万亿参数,再往前就是Sora文生视频异军突起... 在人工智能的浪潮下,AI之于供应链的价值体现在哪些地方?其发…...
《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理
文章目录 一、卷积神经网络的简单介绍二、工作原理(还未写完)1.输入层2.卷积层3.池化层4.全连接层5.输出层 一、卷积神经网络的简单介绍 基本概念 定义:卷积神经网络是一种深度学习模型,通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想…...
数据结构:线性表
1、线性表概述 1.1线性表的定义 线性表(list):零个或多个数据元素的有限序列。 简单地来说,我们可以用下面这张图来描述一个线性表: 1.2 线性表的存储结构 1.2.1顺序存储结构——顺序表 顺序表是将数据全部存储到…...
Ansible PlayBook实践案例
一、PlayBook介绍 1.什么是playbook playbook 顾名思义,即剧本,现实生活中演员按照剧本表演,在 ansible 中,由被控计算机表演,进行安装,部署应用,提供对外的服务等,以及组织计算机处理各种各样…...
Tomcat后台弱口令部署war包
1.环境搭建 cd /vulhub/tomcat/tomcat8 docker-compose up -d 一键启动容器 2.访问靶场 点击Manager App tomcat8的默认用户名和密码都是tomcat进行登录 3.制作war包 先写一个js的一句话木马 然后压缩成zip压缩包 最后修改后缀名为war 4.在网站后台上传war文件 上传war文件…...
胤娲科技:DeepMind的FermiNet——带你穿越“薛定谔的早餐桌”
当AI遇上量子迷雾,FermiNet成了你的“量子导航仪” 想象一下,你早晨醒来,发现家里的厨房变成了薛定谔的实验室,你的咖啡杯和吐司同时处于“存在与不存在”的叠加态。 你伸手去拿,却不确定会不会摸到冰冷的空气或是热腾…...
迅为iTOP-STM32MP157开发板板载4G接口(选配)_千兆以太网_WIFI蓝牙模块_HDMI_CAN_RS485_LVDS接口等
迅为ITOP-STM32MP157是基于ST的STM32MP157芯片开发的一款开发平台。在STM32MP157开发平台上,我们也做了比较多的创新,其中重要的一点就是,iTOP-STM32MP157核心板电源管理采用ST全新配套研制的PMIC电源管理芯片STPMU1A。为整个系统的稳定运行提…...
Android Choreographer 监控应用 FPS
Choreographer 是 Android 提供的一个强大的工具类,用于协调动画、绘制和视图更新的时间。它的主要作用是协调应用的绘制过程,以确保流畅的用户体验。Choreographer 也可以帮助我们获取帧时间信息,从而为性能监测和优化提供重要的数据支持。 …...
关于 mybatis-plus-boot-starter 与 mybatis-spring-boot-starter 的错误
不是知道你是否 出现过这样的错误 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 经过各种度娘,无非就是让你检查三种情况 情况一:mapper.xml没有按照传统的maven架构进行放置 情况二:mybatis的配置信…...
NLP 文本分类任务核心梳理
解决思路 分解为多个独立二分类任务将多标签分类转化为多分类问题更换 loss 直接由模型进行多标签分类 数据稀疏问题 标注更多数据,核心解决方案: 自己构造训练样本 数据增强,如使用 chatGPT 来构造数据更换模型 减少数据需求增加规则弥补…...
k8s中pod的创建过程和阶段状态
管理k8s集群 kubectl k8s中有两种用户 一种是登录的 一种是/sbin/nologin linux可以用密码登录,也可以用证书登录 k8s只能用证书登录 谁拿到这个证书,谁就可以管理集群 在k8s中,所有节点都被网络组件calico设置了路由和通信 所以pod的ip是可以…...
NSSCTF刷题篇1
js类型 [SWPUCTF 2022 新生赛]js_sign 这是一道js信息泄露的题目直接查看源码,有一个main.js文件点击之后,有一串数字和一段base64编码,解开base64编码得到这个编码为敲击码 解码在线网站:Tap Code - 许愿星 (wishingstarmoye.…...
[数据集][目标检测]棉花叶子病害检测数据集VOC+YOLO格式977张22类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):977 标注数量(xml文件个数):977 标注数量(txt文件个数):977 标注类别…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
[特殊字符] 手撸 Redis 互斥锁那些坑
📖 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作,想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁,也顺便跟 Redisson 的 RLock 机制对比了下,记录一波,别踩我踩过…...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
SQL注入篇-sqlmap的配置和使用
在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap,但是由于很多朋友看不了解命令行格式,所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习,链接:https://wwhc.lanzoue.com/ifJY32ybh6vc…...
