当前位置: 首页 > news >正文

软技能与AI技术的融合

  ===================

  一、引言 ----

  随着人工智能(AI)和生成式人工智能(AIGC)如ChatGPT、Midjourney、Claude等大语言模型的迅速崛起,AI辅助编程工具已经变得越来越普遍。这不仅意味着程序员的工作方式正在发生深刻的变革,同时也带来了行业内的热议:AI是否会取代部分编程工作?程序员在AI时代如何保持并提升自身的核心竞争力?

  二、AI与编程:机会与挑战并存 ------------

  不可否认,AI为编程工作带来了前所未有的机会,例如代码自动补全、错误检测、甚至简单的编程任务由AI完成。然而,这同时也带来了挑战。尽管AI工具能够提高编程效率,但它们不可能完全取代人类编程者的创造性和判断力。因此,对于程序员来说,面对AI的冲击,既要拥抱变革,又要防范其可能带来的职业风险。

  三、专注深耕还是广泛学习? ------------

  在AI快速发展的时代,程序员应如何选择自己的学习路径?有人建议专注于某个领域进行深耕细作,成为该领域的专家。这样,即使AI工具再先进,也难以完全取代那些深入理解领域知识的专家。然而,也有人认为在专业领域深耕的同时,还需要广泛学习,以适应快速变化的技术环境。毕竟,技术日新月异,只有不断学习,才能跟上时代的步伐。

  四、软技能的崛起 --------

  在AI无法轻易替代的领域中,软技能显得尤为重要。这些软技能包括但不限于:沟通能力、团队协作、问题解决能力、创新思维等。在编程工作中,这些软技能往往比技术本身更加重要。因为在一个项目中,技术只是实现目标的一种手段,而有效的沟通、合作和问题解决能力则是项目成功的关键。因此,将重点转向提升软技能是一个明智的选择。

  五、实践与反思 ------

  无论是专注于某个领域还是广泛学习,实践和反思都是提升自身核心竞争力的关键。通过实践,我们可以将学到的知识转化为实际的能力;通过反思,我们可以总结经验教训,不断提升自己的认知水平。此外,参与开源项目、参与技术社区的讨论、参与技术培训等都是提升自身实践能力和认知水平的有效途径。

  六、结论 ----

  在AI时代,程序员既面临着挑战,也面临着机遇。要保持和提升自身的核心竞争力,我们需要做到以下几点:首先,拥抱变革,积极学习和应用AI技术;其次,在专业领域深耕的同时,也要广泛学习,以适应快速变化的技术环境;最后,重视软技能的提升,提升自己的沟通、协作、问题解决和创新能力。只有这样,我们才能在AI时代保持竞争力,实现职业生涯的持续发展。

相关文章:

软技能与AI技术的融合

一、引言 ----  随着人工智能(AI)和生成式人工智能(AIGC)如ChatGPT、Midjourney、Claude等大语言模型的迅速崛起,AI辅助编程工具已经变得越来越普遍。这不仅意味着程序员的工作方式正在发生深刻的变革,同…...

在视频上绘制区域:使用Vue和JavaScript实现交互式画布

在数字时代,交互式媒体内容的创建和消费变得越来越普遍。特别是视频内容,它不仅提供了视觉信息,还允许用户与之互动,从而增强了用户体验。本文将介绍如何使用Vue.js框架和JavaScript创建一个交互式组件,该组件允许用户…...

31. RabbitMQ顺序消费

1. 前言 上个小节中我们介绍了 RabbitMQ 中如何防止消息丢失,即保证消息发送的 At Least Once 性质,除此之外,如何防止消息被重复消费,即保证消息消费的 Exactly Once 性质,也是业务逻辑中需要考虑的问题。 2. 消息消费顺序 面试官提问:业务中使用了 RabbitMQ 消息队列…...

BERT-BiLSTM-CRF模型实战

文章目录 BERT-BiLSTM-CRF模型项目结构数据预处理运行环境使用方法关于BERT-BiLSTM-CRF参考文章BERT-BiLSTM-CRF模型 使用谷歌的BERT模型在BiLSTM-CRF模型上进行预训练用于中文命名实体识别。 项目结构 bert_bilstm_crf_ner_pytorchtorch_nerbert-base-chinese --…...

npm 安装 与 切换 淘宝镜像

一、镜像源 npm默认镜像源是国外的,安装依赖速度较慢,使用国内的镜像源速度会快一些。 1、设置淘宝镜像源: #最新地址 淘宝 NPM 镜像站喊你切换新域名啦! npm config set registry https://registry.npm.taobao.org(弃用了&…...

在Windows系统上安装的 Arrow C++ 库

在Windows系统上安装的 Arrow C 库 正文第一步第二步第三步第四步注: 检查是否安装成功 吐槽 正文 第一步 git clone gitgithub.com:apache/arrow.git第二步 打开powershell (好像cmd也可以,不过我试了powershell中不报错,cmd中报错,不是很清楚为什么) 打开arrow的目录 cd …...

格雷母线电缆头安装方法视频-武汉正向科技

正向科技|格雷母线电缆头怎么处理? 正向科技格雷母线采用整体热压工艺生产,一次成型,防护等级 IP67,用在直线或环形位移检测,抗污染能力强,防水、油、灰尘、蒸汽等,能在强粉尘、高温的环境下稳定…...

统信服务器操作系统【Cron定时任务服务】

Cron定时任务服务服务介绍、服务管理、服务配置 文章目录 一、功能概述二、功能介绍1. Cron 服务管理2.Cron 服务管理3.Cron 服务配置run-parts一、功能概述 cron是一个可以用来根据时间、日期、月份、星期的组合来 调度对周期性任务执行的守护进程。利用 cron 所提供的功能,可…...

微前端中的路由加载流程

1. 初始化基座应用 基座应用:基座应用是微前端架构中的主应用,负责管理和协调各个子应用的加载和卸载。 初始化:基座应用在启动时会初始化路由配置,注册各个子应用的路由。 2. 注册子应用 子应用需要向基座应用注册自己的路由和…...

Axure大屏可视化模板:跨领域数据分析平台原型案例

随着信息技术的飞速发展,数据可视化已成为各行各业提升管理效率、优化决策过程的重要手段。Axure作为一款强大的原型设计工具,其大屏可视化模板在农业、园区、城市、企业数据可视化、医疗等多个领域得到了广泛应用。本文将通过几个具体案例,展…...

机器学习(1)——线性回归、线性分类与梯度下降

文章目录 线性回归线性分类线性可分数据线性不可分数据逻辑回归支持向量机 梯度下降批量梯度下降随机梯度下降批量随机梯度下降 线性回归 概述: 在一元线性回归中,我们假设目标变量y与特征变量x存在线性关系,模型表达式为: y …...

完整的端到端的中文聊天机器人

这段代码是一个完整的端到端的中文聊天机器人的实现,包括数据处理、模型训练、预测和图形用户界面(GUI),下面是对各个部分功能的详细说明: 1. 导入必要的库 import os os.environ[CUDA_LAUNCH_BLOCKING] = 1import torch import torch.nn as nn import torch.optim as o…...

【有啥问啥】Stackelberg博弈方法:概念、原理及其在AI中的应用

Stackelberg博弈方法:概念、原理及其在AI中的应用 1. 什么是Stackelberg博弈? Stackelberg博弈(Stackelberg Competition)是一种不对称的领导者-追随者(Leader-Follower)博弈模型,由德国经济学…...

【UI自动化】前言

系列文章目录 【UI自动化】前言 自动化不能代替手工测试,自动化都是以手工测试为基础,自动化测试实现的步骤要依赖手工; 文章目录 系列文章目录【UI自动化】前言 自动化测试的类型自动化解决的问题什么是UI测试测试分类一、使用UI自动化的…...

Unity对象池的高级写法 (Plus优化版)

唐老师关于对物体分类的OOD的写法确实十分好,代码也耦合度也低,但是我有个简单的写法同样能实现一样的效果,所以我就充分发挥了一下主观能动性 相较于基本功能,这一版做出了如下改动 1.限制了对象池最大数量,多出来的…...

vue3<script setup>中computed

在 Vue 3 中&#xff0c;<script setup> 语法糖是 Composition API 的一种简化写法&#xff0c;它允许你更简洁地编写组件逻辑。在 <script setup> 中使用 computed 与在普通 <script> 标签中使用 Composition API 的方式类似&#xff0c;但通常我们会借助 i…...

【已解决】使用JAVA语言实现递归调用-本关任务:用循环和递归算法求 n(小于 10 的正整数) 的阶乘 n!。

本关任务&#xff1a;用循环和递归算法求 n&#xff08;小于 10 的正整数&#xff09; 的阶乘 n!。 测试说明 平台会对你编写的代码进行测试&#xff0c;比对你输出的数值与实际正确数值&#xff0c;只有所有数据全部计算正确才能通过测试&#xff1a; 测试输入&#xff1a;1…...

BiRefNet 教程:基于 PyTorch 实现的双向精细化网络

BiRefNet 教程&#xff1a;基于 PyTorch 实现的双向精细化网络 BiRefNet 是一个图像分割网络&#xff0c;专注于复杂任务如背景移除、掩码生成、伪装物体检测、显著性目标检测等。该模型结合了编码器、解码器、多尺度特征提取、以及梯度监督机制&#xff0c;能够有效处理不同类…...

Oracle 数据库安装和配置指南(新)

目录 1. 什么是Oracle数据库&#xff1f; 2. 安装前的准备工作 2.1 硬件要求 2.2 软件要求 2.3 下载Oracle安装包 3. Oracle数据库的安装步骤 3.1 Windows系统安装步骤 3.2 Linux系统安装步骤 4. 配置Oracle数据库 4.1 设置环境变量&#xff08;Linux&#xff09; 4.…...

JavaScript的注释与常见输出方式

注释 源码中注释是不被引擎所解释的&#xff0c;它的作用是对代码进行解释。Javascript 提供两种注释的写法:一种是单行注释&#xff0c;用//起头;另一种是多行注释&#xff0c;放在/*和*/之间。 单行注释&#xff1a; //这是单行注释 多行注释&#xff1a; /*这是 多行 注…...

深入探索Android开发之Java核心技术学习大全

Android作为全球最流行的移动操作系统之一&#xff0c;其开发技能的需求日益增长。本文将为您介绍一套专为Android开发者设计的Java核心技术学习资料&#xff0c;包括详细的学习大纲、PDF文档、源代码以及配套视频教程&#xff0c;帮助您从Java基础到高级特性&#xff0c;再到A…...

vue3 选择字体的颜色,使用vue3-colorpicker来选择颜色

1、有的时候我们会用到颜色的选择器&#xff0c;像element-plus提供了&#xff0c;但是ant-design-vue并没有&#xff1a; 这个暂时没有看到&#xff1a; 但是Ant Design 5的版本有&#xff0c;应该不是vue的。 2、使用第三方提供的vue3-colorpicker&#xff1a;storybook/cli…...

windows C++ 并行编程-使用消息块筛选器

本文档演示了如何使用筛选器函数&#xff0c;使异步消息块能够根据消息的有效负载接受或拒绝消息。 创建消息块对象(例如 concurrency::unbounded_buffer、concurrency::call 或 concurrency::transformer)时&#xff0c;可以提供筛选器函数&#xff0c;用于确定消息块是接受还…...

【mysql技术内幕】

MySQL之技术内幕 1.MVCC模式2. 实现mvcc模式的基础点3.MySQL锁的类型4. 说下MySQL的索引有哪些吧&#xff1f;5. 谈谈分库分表6. 分表后的id咋么保证唯一性呢&#xff1f;7. 分表后非sharding key的查询咋么处理的&#xff1f; 1.MVCC模式 MVCC, 是multi-version concurrency c…...

快递物流单号识别API接口DEMO下载

单号识别API为用户提供单号识别快递公司服务&#xff0c;依托于快递鸟大数据平台&#xff0c;用户提供快递单号&#xff0c;即可实时返回可能的一个或多个快递公司&#xff0c;存在多个快递公司结果的&#xff0c;大数据平台根据可能性、单号量&#xff0c;进行智能排序。 应用…...

Jetpack——Room

概述 Room是谷歌公司推出的数据库处理框架&#xff0c;该框架同样基于SQLite&#xff0c;但它通过注解技术极大简化了数据库操作&#xff0c;减少了原来相当一部分编码工作量。在使用Room之前&#xff0c;要先修改模块的build.gradle文件&#xff0c;往dependencies节点添加下…...

Dynamic Connected Networks for Chinese Spelling Check(ACL2021)

Dynamic Connected Networks for Chinese Spelling Check(ACL2021) 一&#xff0e;概述 文中认为基于bert的非自回归语言模型依赖于输出独立性假设。不适当的独立性假设阻碍了基于bert的模型学习目标token之间的依赖关系&#xff0c;从而导致了不连贯的问题。为些&#xff0c…...

前端vue-3种生命周期,只能在各自的领域使用

上面的表格可以简化为下面的两句话&#xff1a; setup是语法糖&#xff0c;下面的两个import导入是vue3和vue2的区别&#xff0c;现在的vue3直接导入&#xff0c;比之前vue2简单 还可以是导入两个生命周期函数...

el-upload如何自定展示上传的文件

Element UI 中&#xff0c;el-upload 组件支持通过插槽&#xff08;slot&#xff09;来自定义文件列表的展示方式。这通常是通过 file-list 插槽来实现的。下面是一个使用 el-upload 组件并通过 file-list 插槽来自定义文件列表展示的完整示例代码。 在这个示例中&#xff0c;…...

研1日记15

1. 文心一言生成&#xff1a; 在PyTorch中&#xff0c;nn.AdaptiveAvgPool1d(1)是一个一维自适应平均池化层。这个层的作用是将输入的特征图&#xff08;或称为张量&#xff09;在一维上进行自适应平均池化&#xff0c;使得输出特征图的大小在指定的维度上变为1。这意味着&…...