【AI大模型】通义大模型API接口实现
目录
一、基础环境安装
(一)OpenAI Python SDK安装
(二)DashScope SDK安装
二、OPENAI接口实现
(一)文本输入
(二)流式输出
(三)图像输入
(四)联网搜索
一、基础环境安装
(一)OpenAI Python SDK安装
您需要确保已安装Python3.8及以上版本。通过运行以下命令安装或更新OpenAI Python SDK:
pip install openai(或 pip install -U openai)

如果运行失败,请将pip改为pip3。
(二)DashScope SDK安装
已安装Python3.8及以上版本。请确保安装正确的Python版本。执行以下命令,通过pip安装或更新SDK。
pip install -U dashscope
如果运行失败,请将pip改为pip3。
二、OPENAI接口实现
(一)文本输入
import os
from openai import OpenAIclient = OpenAI(api_key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处用您的API Key进行替换base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", # 填写DashScope服务的base_url
)
completion = client.chat.completions.create(model="qwen-turbo",#通义千问API参考messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},{'role': 'user', 'content': '你是谁?'}],
)print(completion.model_dump_json())
print(completion.choices[0].message.content)
程序输出:
{"id":"chatcmpl-d0b74e82-548f-92a5-9eb4-d4f01c28d285","choices":[{"finish_reason":"stop","index":0,"logprobs":null,"message":{"content":"我是阿里云开发的一款超大规模语言模型,我叫通义千问。","refusal":null,"role":"assistant","function_call":null,"tool_calls":null}}],"created":1727162660,"model":"qwen-turbo","object":"chat.completion","service_tier":null,"system_fingerprint":null,"usage":{"completion_tokens":17,"prompt_tokens":22,"total_tokens":39,"completion_tokens_details":null}}
我是阿里云开发的一款超大规模语言模型,我叫通义千问。
(二)流式输出
import os
from openai import OpenAIclient = OpenAI(api_key=os.getenv("DASHSCOPE_API_KEY"),base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(model="qwen-turbo",messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},{'role': 'user', 'content': '你是谁?'}],stream=True,stream_options={"include_usage": True})
for chunk in completion:print(chunk.choices[0].delta.content)
程序输出:
D:\AI_LLM\Tongyi_LLM\.venv\Scripts\python.exe D:\AI_LLM\Tongyi_LLM\Tonyi_streamOut.py 我是
阿里
云
开发的一款超大规模语言
模型,我叫通义千问
。
(三)图像输入
import os
from openai import OpenAIclient = OpenAI(api_key=os.getenv("DASHSCOPE_API_KEY"),base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(model="qwen-vl-plus",messages=[{"role": "user","content": [{"type": "text","text": "这是什么"},{"type": "image_url","image_url": {"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"}}]}])
print(completion.choices[0].message.content)

程序输出:
D:\AI_LLM\Tongyi_LLM\.venv\Scripts\python.exe D:\AI_LLM\Tongyi_LLM\Tongyi_image.py
这张图片显示了一位女士和一只狗在海滩上互动。她们似乎正在享受彼此的陪伴,狗狗坐在沙滩上伸出爪子与这位女士握手或玩耍。背景中可以看到海浪拍打着海岸线,并且有日落时分柔和光线照射下的天空。这给人一种宁静而温馨的感觉,可能是在傍晚或者清晨的时候拍摄的照片。这种场景通常象征着友谊、爱以及人与宠物之间的深厚情感连接。进程已结束,退出代码为 0
(四)联网搜索
import os
from openai import OpenAIclient = OpenAI(api_key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处用您的API Key进行替换base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", # 填写DashScope服务的base_url
)
completion = client.chat.completions.create(model="qwen-turbo",messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},{'role': 'user', 'content': '介绍一下明天西安的天气'}],extra_body={"enable_search": True},#stream = True,#stream_options = {"include_usage": True},)
print(completion.choices[0].message.content)
#for chunk in completion:#print(chunk.choices[0].delta.content)
程序输出(2024.9.24,西安):
D:\AI_LLM\Tongyi_LLM\.venv\Scripts\python.exe D:\AI_LLM\Tongyi_LLM\Tongyi_Search.py
根据提供的信息,明天西安的天气预报如下:- **气温**:最高温度预计在32度左右,最低温度预计在23度左右。- **天气状况**:全天晴转晴,可能会经历潮湿闷热的天气条件。基于这些描述,明天在西安进行户外活动时,可以考虑以下几点:1. **着装**:选择轻薄且吸湿排汗的夏装,尤其是棉麻质地的短打扮,以保持舒适度和透气性。
2. **防晒**:由于是晴天,阳光强烈,应涂抹防晒霜,并佩戴帽子或使用遮阳伞以保护皮肤免受紫外线伤害。
3. **补水**:因为湿度较高且气温较高,容易出汗,所以要记得多喝水,保持水分补充。
4. **适度活动**:虽然天气预报没有特别提及风力或湿度的影响,但考虑到高温和湿度,可能需要调整户外活动的强度和持续时间,避免过度劳累或中暑。请注意,以上信息是基于历史数据和一般指导原则的概述,实际情况可能会有所变化,特别是在季节转换时期。建议在出行前再次查看最新的天气预报,以获得最准确的信息。进程已结束,退出代码为 0
相关文章:
【AI大模型】通义大模型API接口实现
目录 一、基础环境安装 (一)OpenAI Python SDK安装 (二)DashScope SDK安装 二、OPENAI接口实现 (一)文本输入 (二)流式输出 (三)图像输入 ࿰…...
CVPR最牛图像评价算法!
本文所涉及所有资源均在 传知代码平台可获取。 目录 概述 一、论文思路 1.多任务学习框架: 2.视觉-语言对应关系: 3.动态损失权重: 4.模型优化和评估: 二、模型介绍 三、详细实现方法 1.图像编码器和语言编码器(Image…...
Spring源码-从源码层面讲解传播特性
传播特性:service:REQUIRED,dao:REQUIRED 两个都是required使用的是同一个事务,正常情况,在service提交commit <tx:advice id"myAdvice" transaction-manager"transactionManager"><tx:attributes&…...
Rust调用tree-sitter解析C语言
文章目录 一、Rust 调用 tree-sitter 解析 C 语言代码1. 设置 Rust 项目2. 添加 tree-sitter 依赖3. 编写 Rust 代码4. 运行程序5. 编译出错 二、解决步骤1. 添加 tree-sitter 构建依赖2. 添加 tree-sitter-c 源代码3. 修改 build.rs 以编译 tree-sitter-c 库4. 修改 Cargo.tom…...
奇瑞汽车—经纬恒润 供应链技术共创交流日 成功举办
2024年9月12日,奇瑞汽车—经纬恒润技术交流日在安徽省芜湖市奇瑞总部成功举办。此次盛会标志着经纬恒润与奇瑞汽车再次携手,深入探索汽车智能化新技术的前沿趋势,共同开启面向未来的价值服务与产品新篇章。 面对全球汽车智能化浪潮与产业变革…...
vue3 TagInput 实现
效果 要实现类似于下面这种效果 大致原理 其实是很简单的,我们可以利用 element-plus 组件库里的 el-tag 组件来实现 这里我们可以将其抽离成一个公共的组件,那么现在有一个问题就是通讯问题 这里我们可以利用父子组件之间的通讯,利用 v-model 来实现,父组件传值,子组…...
mysql中的json查询
首先来构造数据 查询department里面name等于研发部的数据 查询语句跟普通的sql语句差不多,也就是字段名要用到path表达式 select * from user u where u.department->$.name 研发部 模糊查询 select * from user u where u.department->$.name like %研发%…...
Etcd权限认证管理
1 查看是否开启权限认证 ctl auth status 2 开启权限认证 ctl auth enable。开启后每一条命令都要加上用户 --userroot:root(root默认最高权限) 3 创建其他用户 ctl user add user1 --user用户名:密码 4 创建角色 ctl role add testR --user 5 为角色添加权限 ctl role g…...
图文组合商标部分驳回后优化后初审通过!
这几天以前有个企业的商标初审下来了,以前是加了图形个别部分没有通过初审,后面是把图形去掉重新用文字申请下来初审。 图形与文字同时申请,会分别审查有一个元素过不了,整体就会过不了,所以平常就会建议分开申请注册商…...
【最新华为OD机试E卷-支持在线评测】爱吃蟠桃的孙悟空(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...
BUUCTF [SCTF2019]电单车详解两种方法(python实现绝对原创)
使用audacity打开,发现是一段PT2242 信号 PT2242信号 有长有短,短的为0,长的为1化出来 这应该是截获电动车钥匙发射出的锁车信号 0 01110100101010100110 0010 0前四位为同步码0 。。。中间这20位为01110100101010100110为地址码0010为功…...
Apache James配置连接达梦数据库
项目场景: Apache James配置连接达梦数据库,其他配置中不存在的数据库也可参考此方案。 配置步骤 1、把需要的jar包导入到James 把DmJdbcDriver18.jar复制到下面lib目录下 james-2.3.2\lib 2、 修改连接配置 james-2.3.2\apps\james\SAR-INF\confi…...
Java实现栈
一、栈Stack 1.1 概念 一种特殊的线性表,只允许在固定的一段进行插入和删除元素操作。进行数据的插入和删除操作的一段称为栈顶,另一端称为栈低。栈中的元素遵循后进先出 LIFO(Last In First Out)的原则。 进栈 出栈 举例:在word中…...
数据结构—栈
栈 概念 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。 压栈:栈…...
服务设计原则介绍
在Java或任何软件开发中,设计服务时遵循一些核心原则是非常重要的,这些原则不仅有助于构建高质量、可维护的软件系统,还能提高系统的可扩展性和可重用性。以下是一些关键的服务设计原则: 单一职责原则(SingleResponsib…...
【Qualcomm】高通SNPE框架的使用 | 原始模型转换为量化的DLC文件 | 在Android的DSP端运行模型
目录 ① 激活snpe环境 ② 设置环境变量 ③ 模型转换 ④ run 首先,默认SNPE工具已经下载并且Setup相关工作均已完成。同时,拥有原始模型文件,本文使用的模型文件为SNPE 框架示例的inception_v3_2016_08_28_frozen.pb文件。image_file_list…...
爬虫的流程
爬虫的流程 获取网页提取信息保存数据自动化程序能爬怎样的数据 获取网页 获取网页就是获取网页的源代码,源代码里包含了网页的部分有用信息,所以只要把源代码获取下来,就可以从中提取想要的信息浏览器访问网页的本质:浏览器向服…...
Git之如何删除Untracked文件(六十八)
简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【…...
k8s集群自动化管理
项目地址 https://github.com/TimeBye/kubeadm-ha准备安装包 # 离线安装环境 curl -LO https://oss.choerodon.com.cn/kubeadm-ha/kubeadm-ha-base-amd64.tar # 集群运行所需的镜像 curl -LO https://oss.choerodon.com.cn/kubeadm-ha/kubernetes-1.30.2-images-amd64.tgz # …...
yum库 docker的小白安装教程(附部分问题及其解决方案)
yum库 首先我们安装yum 首先在控制台执行下列语句 首先切换到root用户,假如已经是了就不用打下面的语句 su root #使用国内的镜像,不执行直接安装yum是国外的,那个有问题 curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.al…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...
