下水道内缺陷识别检测数据集 yolo数据集 共2300张
下水道内缺陷识别检测数据集 yolo数据集 共2300张
下水道内部缺陷识别数据集(Sewer Interior Defect Recognition Dataset, SIDRD)
摘要
SIDRD 是一个专门针对下水道内部缺陷识别的数据集,旨在为城市基础设施维护和管理提供一个标准化的训练和评估平台。该数据集包含了2300张高清的下水道内部图像,这些图像来自于多个城市的下水道系统。每张图像都被详细地标注了裂缝和断裂两种主要类型的缺陷。数据集的设计目标是帮助城市管理者和工程师更好地了解下水道内部缺陷的特征和规律,以便及时发现并修复潜在的问题,保障城市排水系统的正常运行。
数据集特点
- 多样化的下水道环境:数据集包含了多个城市的下水道内部图像,适应于不同的地理条件和建设标准。
- 明确的缺陷分类:数据集将下水道内部的缺陷分为裂缝和断裂两个类别,便于进行针对性的维修和维护工作。
- 高质量的图像:所有的图像都是由专业的地下管道检查机器人拍摄,具有高分辨率和清晰度,能够准确反映下水道内部的真实状况。
- 详细的标注信息:每张图像都经过专业人员的仔细标注,包括缺陷的位置、形状、大小等关键信息。
- 易于使用:数据集已经按照YOLO格式整理,可以直接用于训练和评估YOLO系列的目标检测模型。
- 广泛的适用性:适用于城市基础设施维护、排水系统规划和改进等多个领域。
数据集构成
- 图像数量:总共有2300张下水道内部图像。
- 类别数:2类
- 类别名称及对应数量:
Crack
: 裂缝 (2007张)Fracture
: 断裂 (633张)
示例代码
以下是一个简单的Python脚本示例,用于加载数据集中的一对图像-标签对,并可视化其中的标注信息:
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle# 数据集目录路径
data_dir = 'path/to/sidrd_dataset'
train_image_dir = os.path.join(data_dir, 'images/train')
train_label_dir = os.path.join(data_dir, 'labels/train')# 选取一张训练图像及其对应标签
image_files = os.listdir(train_image_dir)
image_file = image_files[0] # 假设取第一张图
label_file = os.path.splitext(image_file)[0] + '.txt'image_path = os.path.join(train_image_dir, image_file)
label_path = os.path.join(train_label_dir, label_file)# 加载图像
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
height, width, _ = image.shape# 解析YOLO格式标签
def parse_yolo_label(label_path, image_width, image_height):bboxes = []with open(label_path, 'r') as f:lines = f.readlines()for line in lines:class_id, x_center, y_center, box_width, box_height = map(float, line.strip().split())x_min = int((x_center - box_width / 2) * image_width)y_min = int((y_center - box_height / 2) * image_height)box_width = int(box_width * image_width)box_height = int(box_height * image_width)bboxes.append((class_id, x_min, y_min, box_width, box_height))return bboxes# 解析标签
bboxes = parse_yolo_label(label_path, width, height)# 可视化标注
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
colors = ['red', 'blue']
names = ['Crack', 'Fracture']
for bbox, color_name in zip(bboxes, colors):class_id, x, y, w, h = bboxrect = Rectangle((x, y), w, h, linewidth=2, edgecolor=color_name, facecolor='none')ax.add_patch(rect)ax.text(x, y - 10, names[int(class_id)], color=color_name, fontsize=8)plt.title('Sewer Interior Defect Recognition Dataset')
plt.axis('off')
plt.show()
数据集使用指南
-
数据准备:
- 确认数据集路径是否正确,并且图像和标签文件均存在指定的目录下。
- 检查数据集是否有损坏或缺失的文件,确保所有图像和对应的标注文件都是完整的。
-
数据集划分:
- 数据集已经划分为训练集、验证集和测试集,可以直接使用。
-
配置文件:
-
根据所使用的深度学习框架创建相应的配置文件。对于YOLOv5等模型,通常需要一个
data.yaml
文件来描述数据集路径和类别信息。 -
data.yaml
示例内容如下:train: path/to/sidrd_dataset/images/train val: path/to/sidrd_dataset/images/validation test: path/to/sidrd_dataset/images/testnc: 2 names: ['Crack', 'Fracture']
-
-
模型训练:
- 选择适合任务的深度学习框架(如YOLOv5, YOLOv7, Detectron2等)。
- 配置训练参数,包括学习率、批次大小、迭代次数等。
- 使用提供的数据集开始训练模型。确保在训练过程中监控模型的收敛情况和损失函数的变化。
-
模型评估:
- 训练完成后,使用验证集或测试集评估模型的表现,根据实际情况调整模型参数。
-
应用实践:
- 将训练好的模型应用于实际的城市基础设施维护中,实现自动化下水道缺陷识别和定位。
相关文章:

下水道内缺陷识别检测数据集 yolo数据集 共2300张
下水道内缺陷识别检测数据集 yolo数据集 共2300张 下水道内部缺陷识别数据集(Sewer Interior Defect Recognition Dataset, SIDRD) 摘要 SIDRD 是一个专门针对下水道内部缺陷识别的数据集,旨在为城市基础设施维护和管理提供一个标准化的训练…...

年轻用户对Facebook的使用趋势分析
在社交媒体的蓬勃发展中,Facebook作为全球最大的社交平台之一,尽管面临着来自新兴平台的竞争,仍然在年轻用户中扮演着重要角色。然而,年轻用户对Facebook的使用方式和趋势却在不断变化。本文将探讨年轻用户对Facebook的使用趋势&a…...

EasyCVR全方位安全守护智慧电厂:构建高效视频监控系统优势分析
随着信息技术的飞速发展和数字化时代的到来,电厂作为能源供应的重要枢纽,其安全性和管理效率成为社会各界关注的焦点。为了满足电厂对高效、智能、可靠视频监控系统的需求,基于EasyCVR平台建设的电厂视频监控系统应运而生。 一、系统构成 基…...

基于深度学习的情感生成与交互
基于深度学习的情感生成与交互是一个新兴的研究领域,旨在通过深度学习技术生成具有情感的反应,以增强人机交互的自然性和有效性。该技术涉及情感识别、自然语言处理、计算机视觉等多个领域,并在多个应用场景中展现出潜力。 情感生成的主要方…...

JavaScript匿名函数
引言 JavaScript是一种广泛使用的脚本语言,用于Web开发和其他领域。在JavaScript中,函数是非常重要的组成部分,它们允许开发者组织代码、复用代码以及执行特定的任务。本文将探讨一种特殊的函数类型——匿名函数,并介绍如何使用它…...

线性判别分析(LDA)中计算两个类的中心点在投影方向w上的投影示例
通过一个具体的例子,详细说明 w T μ 0 w^T \mu_0 wTμ0 和 w T μ 1 w^T \mu_1 wTμ1 如何表示两个类的中心点在投影方向 w w w 上的投影。 假设: 我们有两个类的数据集,均值向量 μ 0 \mu_0 μ0 和 μ 1 \mu_1 μ1ÿ…...

前端知识——标签知识
1.p段落标签 ——一个p标签表示一个段落 单独占一行 >p标签里面不可以嵌套其它的块级标签(div h1~h6 p等) 会导致浏览器自动分裂成两个标签 不规范的写法 >但是可以包裹span标签 2.span标签 ——包裹文字标签 可以和span一行显示 3.文本格式化标签 ——给…...

使用Docker和cpolar在Linux服务器上搭建DashDot监控面板
使用Docker和cpolar在Linux服务器上搭建DashDot监控面板 前言环境准备安装Docker下载Dashdot镜像 部署DashDot应用本地访问DashDot服务安装cpolar内网穿透固定DashDot公网地址结语 前言 在这个数字化飞速发展的时代,服务器作为支撑各种应用和服务的基础设施…...

解决docker拉取镜像报错
报错信息如下: Error response from daemon: Get "https://registry-1.docker.io/v2/": net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)网上试了很多方式,有的需要配置DNS解析&…...

C++之STL—deque容器
双端数组 区别于 vector (单端数组), 构造函数 注意:读取数据时,const修饰保证函数内只能读取,不能修改数据 void print(const deque<int>& deq) {for (deque<int>::const iterator it deq.begin(); it ! deq.e…...

leveldb前缀匹配查找Seek
个人随笔 (Owed by: 春夜喜雨 http://blog.csdn.net/chunyexiyu) 参考:https://github.com/google/leveldb/blob/main/include/leveldb/db.h 参考:百度AI 1. 背景 最近偶然发现了,leveldb前缀匹配查找的功能。 之前没有从这个角度去想过See…...

【自动驾驶】ros如何隔绝局域网内其他电脑播包
1.问题 可能碰到自己播包的时候,别人播包的传到我们电脑上,导致无法分析问题,或者出现一些奇怪的现象。 2.解决 export ROS_LOCALHOST_ONLY1 在终端加上这句话,或者在~/.bashrc中添加,通过source ~/.bashrc使其生…...

MySQL程序
目录 MySQL程序 常用的MySQL的程序 mysqld程序 mysql客户端 客户端命令的常用的选项 配置文件 配置文件语法 MySQL客户端命令 编辑 .sql 文件中执行SQL语句 mysqlcheck (表维护程序) Mysqldump(数据库备份程序) mysql…...

吉林省自闭症寄宿学校:提供个性化培养方案
在吉林省的怀抱中,隐藏着一片温馨而特殊的天地——星贝育园自闭症儿童寄宿制学校。这里,不是简单的教育场所,而是无数自闭症儿童梦想启航的港湾,是他们感受爱、学习成长、绽放自我光芒的温馨家园。 自闭症,一个逐渐被…...

Java基础 — Java 虚拟机(上篇)
该文章属于Java进阶部分的JVM入门,本章讲述了JVM的历史、Java源代码到机器码的过程以及 Class字节码文件的内部结构等。 了解了这篇文章,能让你深入地了解JVM知识,保证在短时间内掌握JVM! JVM 入门教程(上篇࿰…...

C++ | Leetcode C++题解之第435题无重叠区间
题目: 题解: class Solution { public:int eraseOverlapIntervals(vector<vector<int>>& intervals) {if (intervals.empty()) {return 0;}sort(intervals.begin(), intervals.end(), [](const auto& u, const auto& v) {retur…...

AI编辑器CURSOR_CURSOR安装教程_使用AI进行编码的最佳方式。
一、CUROR简介 作为一个在代码海洋里遨游多年的老程序员,我得说,遇到CURSOR这位AI编辑器,就像是编程路上偶遇了一位智慧而又贴心的老友。 想象一下,夜深人静,你正埋头于那些错综复杂的逻辑和无尽的bug之中࿰…...

华为HarmonyOS灵活高效的消息推送服务(Push Kit) -- 10 推送实况窗消息
场景介绍 实况窗是一种帮助用户聚焦正在进行的任务,方便快速查看和即时处理的通知形态。有关实况窗简介、权限申请、开放场景、设计规范等说明,请参见Live View Kit简介。 通过Push Kit发送的实况窗消息支持三种操作类型,分别是: 实况窗消息操作类型 支持操作的场景类型 …...

探索 Go 语言程序实体:揭开神秘面纱
《探索 Go 语言程序实体:揭开神秘面纱》 在 Go 语言的世界里,程序实体是构建强大应用的基石。它们就像是魔法世界中的元素,各自有着独特的能力和用途。让我们一起深入探索 Go 语言程序实体的那些事儿。 一、什么是 Go 语言程序实体? 在 Go 语言中,程序实体是指可以被命…...

深入理解端口、端口号及FTP的基本工作原理
FTP是TCP/IP的一种具体应用,FTP工作在OSI模型的第七层,TCP模型的第四层上,即应用层,FTP使用的是传输层的TCP传输而不是UDP,这样FTP客户在和服务器建立连接前就要经过一个被广为熟知的“三次握手”的过程,其…...

9.3 Linux_文件I/O_相关函数
打开与关闭 1、打开文件 int open(const char *pathname, int flags); int open(const char *pathname, int flags, mode_t mode);返回值:成功返回文件描述符,失败返回EOF pathname:文件路径 flags:标志,其中O_RDO…...

点亮一个LED灯
一、任务分析 一个灯怎么样才会亮? 图中的小灯两端接正负极,小灯就会点亮,但是我们不能主动控制灯的亮灭,于是加入了开关。开关打开断开小灯正极,小灯就会熄灭,反之则点亮。 在板子上的灯是如何连接的&…...

分布式框架 - ZooKeeper
一、什么是微服务架构 1、单体架构 顾名思义一个软件系统只部署在一台服务器上。 在高并发场景中,比如电商项目,单台服务器往往难以支撑短时间内的大量请求,聪明的架构师想出了一个办法提高并发量:一台服务器不够就加一台&am…...

8月份,AI图像生成领域web端产品排行榜及产品是做什么的
看全球用户量级别的Top12(WEB)。 排名 产品名 分类 8月访问量 上月对比 1 Canva AI Design Tool 711.9M 6.48% 2 Remove.bg AI Image Editor 72.79M 2.84% 3 Fotor AI Image Editor 15.62M 2.34% 4 Civitai Model Training & …...

Sqlite_Datetime列选择三月的行
In SQLite, use the strftime function to extract components from a date/time value SELECT * FROM table WHERE strftime(%m, datemonth) 03;strftime(‘%m’, datemonth): extracts the month part from the datemonth column as a string (with leading zeros for sing…...

spring里面内置的非常实用的工具
一 、请求数据记录 Spring Boot提供了一个内置的日志记录解决方案,通过 AbstractRequestLoggingFilter 可以记录请求的详细信息。 AbstractRequestLoggingFilter 有两个不同的实现类,我们常用的是 CommonsRequestLoggingFilter。 通过 CommonsRequestL…...

计算机毕业设计 基于Python内蒙古旅游景点数据分析系统 Django+Vue 前后端分离 附源码 讲解 文档
🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…...

centos7 docker部署nacos
1. 一行代码安装git yum -y install git 2. 下载最新版nacos源码: git clone https://github.com/nacos-group/nacos-docker.git 进入nacos-docker文件 cd nacos-docker 3.docker安装数据库Mysql8 按这个来就行,非常好 Docker安装mysql8-超详细、每…...

短视频矩阵源码/短视频矩阵系统搭建/源码开发知识分享
集星云推智剪获客系统,通过自主研发的高效发布模式,为企业提供稳定的接口与自动化操作,助力企业实现短视频矩阵的构建。该系统整合了十大核心功能,包括AI辅助文案撰写、视频剪辑、智能去重、内容拆分、文字转语音、文本提取、批量…...

Git使用教程-将idea本地文件配置到gitte上的保姆级别教程
🤹♀️潜意识起点:个人主页 🎙座右铭:得之坦然,失之淡然。 💎擅长领域:前端 是的,我需要您的: 🧡点赞❤️关注💙收藏💛 是我持…...