当前位置: 首页 > news >正文

智谱清影 - CogVideoX-2b-部署与使用

🍑个人主页:Jupiter.
🚀 所属专栏:Linux从入门到进阶
欢迎大家点赞收藏评论😊

在这里插入图片描述

在这里插入图片描述

目录

        • `体验地址:`[丹摩DAMODEL官网](https://www.damodel.com/console/overview)
    • `CogVideoX 简介`
            • `本篇将详细介绍使用丹摩服务器部署和初步使用 CogVideoX 的实践流程。`
    • `CogVideoX 部署实践流程`
        • `创建丹摩实例`
        • `配置环境和依赖`
        • `模型与配置文件`
        • `开始运行`
          • `调试`
        • `webUI`


体验地址:丹摩DAMODEL官网

CogVideoX 简介

智谱 AI 在 8 月 6 日宣布了一个令人兴奋的消息:他们将开源视频生成模型 CogVideoX,目前,其提示词上限为 226 个 token,视频长度为 6 秒,帧率为 8 帧 / 秒,视频分辨率为 720*480,而这仅仅是初代,性能更强参数量更大的模型正在路上。

CogVideoX 的核心在于它的 3D 变分自编码器,这项技术能够将视频数据压缩至原来的 2%,极大地降低了模型处理视频时所需的计算资源,还巧妙地保持了视频帧与帧之间的连贯性,有效避免了视频生成过程中可能出现的闪烁问题。

在这里插入图片描述

  • 为了进一步提升内容的连贯性,CogVideoX 采用了 3D 旋转位置编码(3D RoPE)技术,使得模型在处理视频时能够更好地捕捉时间维度上的帧间关系,建立起视频中的长期依赖关系,从而生成更加流畅和连贯的视频序列。

  • 在可控性方面,智谱 AI 研发了一款端到端的视频理解模型,这个模型能够为视频数据生成精确且与内容紧密相关的描述。这一创新极大地增强了 CogVideoX 对文本的理解和对用户指令的遵循能力,确保了生成的视频不仅与用户的输入高度相关,而且能够处理超长且复杂的文本提示。

代码仓库链接,点击跳转
模型下载链接,点击跳转
技术报告链接,点击跳转

本篇将详细介绍使用丹摩服务器部署和初步使用 CogVideoX 的实践流程。

CogVideoX 部署实践流程

创建丹摩实例
  • 首先进入控制台,选择 GPU 云实例,点击创建实例:
    在这里插入图片描述

  • 由于 CogVideoX 在 FP-16 精度下的推理至少需 18GB 显存,微调则需要 40GB 显存。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 创建成功,运行中:

在这里插入图片描述

配置环境和依赖

官方代码仓库,点击跳转
基于官方代码仓库的配置方法推荐您阅读,点击跳转

平台已预置了调试好的代码库,您可开箱即用,以下是配置方法:

  • 进入 JupyterLab 后,打开终端,首先拉取 CogVideo 代码的仓库
wget http://file.s3/damodel-openfile/CogVideoX/CogVideo-main.tar
  • 下载完成后解压缩CogVideo-main.tar
tar -xf CogVideo-main.tar
  • 其次,进入 CogVideo-main 文件夹,输入安装对应依赖:
cd CogVideo-main/
pip install -r requirements.txt

在这里插入图片描述

以上依赖安装好后,可以在终端输入 python,然后输入以下代码进行测试:

import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
  • 显示如下状态,没有报错就说明依赖安装成功!输入quit()可退出 python。
    在这里插入图片描述
模型与配置文件

除了配置代码文件和项目依赖,还需要上传 CogVideoX 模型文件和对应的配置文件。

官方模型仓库,点击跳转
基于官方模型仓库的配置方法推荐您阅读,点击跳转

平台已为您预置了 CogVideoX 模型,您可内网高速下载,执行以下命令:

cd /root/workspace
wget http://file.s3/damodel-openfile/CogVideoX/CogVideoX-2b.tar

在这里插入图片描述

下载完成后解压缩CogVideoX-2b.tar

tar -xf CogVideoX-2b.tar

解压后的目录如图所示
在这里插入图片描述

开始运行
调试
  • 进入CogVideo-main文件夹,运行test.py文件:
cd /root/workspace/CogVideo-main
python test.py
  • test.py 代码内容如下,主要使用diffusers库中的CogVideoXPipeline模型,加载了一个预训练的 CogVideo 模型,然后根据一个详细的文本描述(prompt),生成对应视频:
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video# prompt里写自定义想要生成的视频内容
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."pipe = CogVideoXPipeline.from_pretrained("/root/workspace/CogVideoX-2b", # 这里填CogVideo模型存放的位置,此处是放在了数据盘中torch_dtype=torch.float16
).to("cuda")# 参数do_classifier_free_guidance设置为True可以启用无分类器指导,增强生成内容一致性和多样性
# num_videos_per_prompt控制每个prompt想要生成的视频数量
# max_sequence_length控制输入序列的最大长度
prompt_embeds, _ = pipe.encode_prompt(prompt=prompt,do_classifier_free_guidance=True,num_videos_per_prompt=1,max_sequence_length=226,device="cuda",dtype=torch.float16,
)video = pipe(num_inference_steps=50,guidance_scale=6,prompt_embeds=prompt_embeds,
).frames[0]export_to_video(video, "output.mp4", fps=8)
  • 运行成功后,可以在当前文件夹中找到对应prompt生成的 output.mp4 视频:

在这里插入图片描述

webUI

模型官方也提供了 webUIDemo,进入CogVideo-main文件夹,运行gradio_demo.py文件:

cd /root/workspace/CogVideo-main
python gradio_demo.py

此时我们需要通过丹摩平台提供的端口映射能力,把内网端口映射到公网;

进入GPU 云实例页面,点击操作-更多-访问控制:

在这里插入图片描述

点击添加端口,添加7870端口

在这里插入图片描述

添加成功后,通过访问链接即可访问到刚刚启动的gradio页面:

在这里插入图片描述


相关文章:

智谱清影 - CogVideoX-2b-部署与使用

🍑个人主页:Jupiter. 🚀 所属专栏:Linux从入门到进阶 欢迎大家点赞收藏评论😊 目录 体验地址:[丹摩DAMODEL官网](https://www.damodel.com/console/overview) CogVideoX 简介本篇将详细介绍使用丹摩服务器部…...

python queue.Queue介绍

queue.Queue 是 Python 中的线程安全队列,适合用于多线程或多进程环境中进行任务和数据的共享。queue.Queue 提供了 FIFO(先进先出)队列的实现,并包含线程锁机制以保证在多线程环境下数据的安全性。 queue.Queue 的主要方法&…...

Qt 每日面试题 -3

21、static和const的使用 static : 静态变量声明,分为局部静态变量,全局静态变量,类静态成员变量。也可修饰类成员函数。 有以下几类∶ 局部静态变量 : 存储在静态存储区,程序运行期间只被初始化一次,作用域仍然为局部…...

TypeScript系列:第四篇 - typeof 与 keyof

在 TypeScript系列:第三篇 - 泛型 有提及 keyof 的使用。 本文将详细介绍 keyof 和 typeof 运算符的基本概念、应用场景以及如何结合使用它们来提高代码的类型安全性。 #mermaid-svg-bnMG6PMTxMI4iafc {font-family:"trebuchet ms",verdana,arial,sans-se…...

JDK8新增特性(值得收藏)

1.Lamdba表达式 就相当于要使用接口Lock就不需要再创建一个类去实现接口了,直接用Lambda表达式省略了在创建的那个类。 Lamdba表达式是什么? “->”,Lambda操作符或箭 头操作符,它将Lambda表达式分割为两部分。 左边:指Lam…...

MATLAB系列06:复数数据、字符数据和附加画图类

MATLAB系列06:复数数据、字符数据和附加画图类 6. 复数数据、字符数据和附加画图类6.1 复数数据6.1.1 复变量( complex variables)6.1.2 带有关系运算符的复数的应用6.1.3 复函数( complex function)6.1.4 复数数据的作…...

【永磁同步电机(PMSM)】 4. 同步旋转坐标系仿真模型

【永磁同步电机(PMSM)】 4. 同步旋转坐标系仿真模型 1. Clarke 变换的模型与仿真1.1 Clarke 变换1.2 Clarke 变换的仿真模型 2. Park 变换的模型与仿真2.1 Park 变换2.2 Park 变换的仿真模型 3. Simscape标准库变换模块3.1 abc to Alpha-Beta-Zero 模块3…...

CSAPP Attack Lab

个人感觉非常有意思的一个 Lab,涉及的知识面比较窄,主要关注 缓冲区溢出漏洞 这一个方面,并基于此进行代码攻击,体验一把做黑客的感觉,对应知识点为书中的 3.10 节内容。 这个 Lab 上手便给了我当头一棒,在…...

通信工程学习:什么是NFVI网络功能虚拟化基础设施层

NFVI:网络功能虚拟化基础设施层 NFVI(Network Functions Virtualization Infrastructure)即网络功能虚拟化基础设施层,是NFV(Network Functions Virtualization,网络功能虚拟化)架构中的一个重要…...

不在同一局域网怎么远程桌面?非局域网环境下,实现远程桌面访问的5个方法分享!

非局域网环境下,怎么远程桌面?还能做到吗? 在企业管理中,远程桌面访问已成为提高工作效率、实现跨地域协同工作的关键工具。 然而,当被控端与控制端不在同一局域网时,如何实现远程桌面连接成为了许多企业…...

SparkSQL-初识

一、概览 Spark SQL and DataFrames - Spark 3.5.2 Documentation 我们先看下官网的描述: SparkSQL是用于结构化数据处理的Spark模块,与基本的Spark RDD API不同。Spark SQL提供的接口为Spark提供了更多关于正在执行的数据和计算结构的信息。在内部&a…...

Go语言的垃圾回收(GC)机制的迭代和优化历史

Go语言的垃圾回收(GC)机制自Go语言发布以来经历了多次重要的迭代和优化,以提高性能和减少程序运行时的停顿时间。 以下是一些关键的版本和相应的GC优化: Go版本GC耗时情况主要改进点Go 1.0-1.4可能达到几百毫秒至秒级使用简单的标…...

thinkphp8 从入门到放弃(后面会完善用到哪里写到哪)

thinkphp8 从入门到放弃 引言 thinkphp* 大道至简一、 thinkphp8 安装安装Composerthinkphp 安装命令(tp-项目名称)多应用安装(一个项目不会只有一个应用)安装完文件目录如下本地部署配置伪静态好了项目可以run 二、架构服务(Service&#xf…...

对于电商跨境电商独立站中源代码建站和SaaS建站的区别

电商跨境电商独立站的搭建有多种方式,作为电商企业,搭建完全自主控制的电商独立站,对于电商企业的发展和运营有着至关重要的作用。下面推荐一个使用多年的跨境电商独立站系统源码,做简要介绍,据说前段时间火爆的Pandab…...

使用vite+react+ts+Ant Design开发后台管理项目(二)

前言 本文将引导开发者从零基础开始,运用vite、react、react-router、react-redux、Ant Design、less、tailwindcss、axios等前沿技术栈,构建一个高效、响应式的后台管理系统。通过详细的步骤和实践指导,文章旨在为开发者揭示如何利用这些技术…...

C++之 string(中)

C之 string string类对象的容量操作 resize 将有效字符的个数该成n个,多出的空间用字符c填充 虽然在string里用的不多,但是在vector里面常见 这里有三种情况: 1)resize小于当前的size 2)resize大于当前的size,小于capacity …...

双向链表的基本结构及功能实现

1.基本结构: 双向链表是一种链表数据结构,它由一系列节点组成,每个节点包含三个部分: (1).数据域:存储节点的数据 (2).前驱指针:指向前一个节点 (3).后驱指针:指向下一个节点 2.基本特性: 双向链接: 与单向链表…...

stm32定时触发软件中断

这里使用定时器作为延时,单位为秒,使用exti的软件触发方式,配置见代码,在main里进行触发软件中断 代码 #include "stm32f10x.h" #include "stm32f10x_gpio.h" #include "misc.h" #include "…...

blender设置背景图怎么添加?blender云渲染选择

Blender是一款功能强大的3D建模软件,它以流畅的操作体验和直观的用户界面而闻名。使用Blender,你可以轻松地为你的3D模型添加背景图片。 以下是具体的操作步骤: 1、启动Blender:首先,打开Blender软件。访问添加菜单&a…...

MMD模型及动作一键完美导入UE5-Blender方案(三)

1、下载并安装blender_mmd_tools插件 1、下载并安装Blender,Blender,下载Blender3.6,下载太新的版本可能会跟blender_mmd_tools不匹配 2、github下载blender_mmd_tools:https://github.com/UuuNyaa/blender_mmd_tools/ 3、Edit->Preference->Add ons->Install F…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

在rocky linux 9.5上在线安装 docker

前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: ​onCreate()​​ ​调用时机​:Activity 首次创建时调用。​…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...