当前位置: 首页 > news >正文

SQL_having_pandas_filter

HAVING子句在SQL中用于对分组后的结果进行过滤,它通常与GROUP BY子句一起使用。HAVING子句允许你指定条件来过滤聚合函数的结果,而WHERE子句则用于在分组之前过滤原始数据。

基本语法

SELECT column_name, aggregate_function(column_name)
FROM table_name
GROUP BY column_name
HAVING condition
ORDER BY column_name;

• column_name: 你想要查询的列名。
• aggregate_function: 聚合函数,如SUM(), AVG(), COUNT(), MIN(), MAX()等。
• table_name: 表名。
• condition: HAVING子句的条件,通常涉及到聚合函数。

示例

假设我们有一个名为employees的表,包含以下列:department_id, salary。我们想要找出平均薪资超过50000的部门。

SELECT department_id, 
AVG(salary) AS average_salary
FROM employees
GROUP BY department_id
HAVING AVG(salary) > 50000;

在例子中:
• GROUP BY department_id: 根据department_id列对数据进行分组。
• AVG(salary) AS average_salary: 计算每个部门的平均薪资。
• HAVING AVG(salary) > 50000: 过滤出平均薪资超过50000的部门。

更复杂的示例

假设我们有一个名为sales的表,包含以下列:region_id, year, sales_amount。我们想要找出在过去两年中每年销售额都超过100000的地区。

SELECT region_id
FROM sales
WHERE year > (SELECT YEAR(NOW()) - 2)
GROUP BY region_id
HAVING SUM(CASE WHEN year = (SELECT YEAR(NOW())) THEN sales_amount ELSE 0 END) > 100000
AND SUM(CASE WHEN year = (SELECT YEAR(NOW()) - 1) THEN sales_amount ELSE 0 END) > 100000;

在例子中:
• WHERE year > (SELECT YEAR(NOW()) - 2): 过滤出过去两年的数据。
• GROUP BY region_id: 根据region_id列对数据进行分组。
• HAVING子句包含两个条件:
• SUM(CASE WHEN year = (SELECT YEAR(NOW())) THEN sales_amount ELSE 0 END) > 100000: 过滤出今年销售额超过100000的地区。
• SUM(CASE WHEN year = (SELECT YEAR(NOW()) - 1) THEN sales_amount ELSE 0 END) > 100000: 过滤出去年销售额超过100000的地区。

注意事项

  1. 使用场景:HAVING子句通常用于与聚合函数一起使用,而WHERE子句用于过滤原始数据。
  2. 条件表达式:HAVING子句中可以使用COUNT(), SUM(), AVG(), MIN(), MAX()等聚合函数。
  3. 子查询:HAVING子句中可以使用子查询,如示例中的(SELECT YEAR(NOW()))。

再来一个例子,和pandas .filter 比较

有一个名为orders的表,包含以下列:order_id, customer_id, order_date, total_amount。我们想要找出在过去一年中至少有3个订单且总金额超过5000元的客户。

SQL 查询

SELECT customer_id, COUNT(order_id) AS order_count, SUM(total_amount) AS total_spent
FROM orders
WHERE order_date >= DATE_SUB(CURDATE(), INTERVAL 1 YEAR)
GROUP BY customer_id
HAVING COUNT(order_id) >= 3 AND SUM(total_amount) > 5000;

一点说明
在查询中,order_date >= DATE_SUB(CURDATE(), INTERVAL 1 YEAR) 用于过滤出在过去一年内发生的订单。
在 SQL 中,DATE_SUB 函数用于从一个日期中减去指定的时间间隔。CURDATE() 函数返回当前日期(不包含时间部分),而 INTERVAL 1 YEAR 指定了时间间隔为 1 年。
将这些组合起来,DATE_SUB(CURDATE(), INTERVAL 1 YEAR) 会计算出当前日期往前推一年的时间点。
• CURDATE(): 返回当前日期,例如 2024-09-25。
• DATE_SUB(…, INTERVAL 1 YEAR): 从当前日期减去 1 年,结果为 2023-09-25。

Pandas 示例
在Pandas中,我们可以使用groupby()方法来分组数据,然后使用filter()方法来实现类似的过滤效果。

import pandas as pd
# 创建一个示例DataFrame
data = {'order_id': [1, 2, 3, 4, 5, 6],'customer_id': [101, 101, 102, 103, 103, 103],'order_date': pd.to_datetime(['2023-04-01', '2023-05-01', '2023-06-01', '2023-07-01', '2023-08-01', '2023-09-01']),'total_amount': [200, 300, 150, 400, 500, 600]
}
df = pd.DataFrame(data)# 过滤出过去一年内的订单
one_year_ago = pd.Timestamp.now() - pd.DateOffset(years=1)
filtered_df = df[df['order_date'] >= one_year_ago]# 使用groupby()和agg()计算每个客户的订单数量和总消费金额
grouped_df = filtered_df.groupby('customer_id').agg(order_count=('order_id', 'count'),total_spent=('total_amount', 'sum')
)# 使用filter()过滤出至少有3个订单且总金额超过5000元的客户
result_df = grouped_df.filter(lambda x: (x['order_count'] >= 3) & (x['total_spent'] > 5000))print(result_df)

解释
• groupby(‘customer_id’): 根据客户ID进行分组。
• .agg(order_count=(‘order_id’, ‘count’), total_spent=(‘total_amount’, ‘sum’)): 计算每个客户的订单数量和总消费金额。
• filter(lambda x: (x[‘order_count’] >= 3) & (x[‘total_spent’] > 5000)): 使用filter()方法来过滤出至少有3个订单且总金额超过5000元的客户。

相关文章:

SQL_having_pandas_filter

HAVING子句在SQL中用于对分组后的结果进行过滤,它通常与GROUP BY子句一起使用。HAVING子句允许你指定条件来过滤聚合函数的结果,而WHERE子句则用于在分组之前过滤原始数据。 基本语法 SELECT column_name, aggregate_function(column_name) FROM table…...

从软件架构设计角度理解Kafka

网上对于消息中间件的介绍文章比较多,这里我们不再赘述,我们换个思路来理解消息中间件,从软件开发架构的角度来看下消息中间件是如何诞生和演进的。 一、概述 上图中P代表 Provider,C代表Consumer,下同。P和C是一个典型…...

什么是中断?

1.什么是中断 2.中断的重要性 3.中断的上下半部 4.中断处理流程 中断的原则 5.ARM处理器程序运行过程 6.程序被被中断时,怎么保护现场 1.什么是中断 中断是指在 CPU 正常运行期间, 由外部或内部事件引起的一种机制。 当中断发生时,…...

后端(实例)08

设计一个前端在数据库调取数据的表格&#xff0c;并完成基础点击增删改查的功能&#xff1a; 1.首先写一个前端样式&#xff08;空壳&#xff09; <!DOCTYPE html> <html> <head> <meta charset"UTF-8"> <title>Insert title here&l…...

【stm32】TIM定时器输出比较-PWM驱动LED呼吸灯/舵机/直流电机

TIM定时器输出比较 一、输出比较简介1、OC&#xff08;Output Compare&#xff09;输出比较2、PWM简介3、输出比较通道(高级)4、输出比较通道(通用)5、输出比较模式6、PWM基本结构配置步骤&#xff1a;程序代码&#xff1a;PWM驱动LED呼吸灯 7、参数计算8、舵机简介程序代码&am…...

如何使用ssm实现线上旅游体验系统+vue

TOC ssm691线上旅游体验系统vue 绪论 课题背景 身处网络时代&#xff0c;随着网络系统体系发展的不断成熟和完善&#xff0c;人们的生活也随之发生了很大的变化。目前&#xff0c;人们在追求较高物质生活的同时&#xff0c;也在想着如何使自身的精神内涵得到提升&#xff0…...

探索JMeterTools:一个Python驱动的JMeter脚本生成器

JMeterTools 简介 JMeterTools 是一个由 Python 编写的开源项目&#xff0c;旨在帮助测试人员快速生成 JMeter 测试脚本。通过简单的 Python API&#xff0c;用户可以方便地定义测试计划、线程组、HTTP 请求等&#xff0c;可以结合接口自动化测试项目&#xff0c;将接口自动化…...

【React】组件通信

1. 组件通信 组件间的数据传递 1.1 父传子 步骤&#xff1a; 父组件传递数据——在子组件标签上绑定属性子组件接收数据——子组件通过props参数接收数据 function Son(props) {return <div>{props.value}</div> }function App() {const value 父组件传给子…...

C++核心编程和桌面应用开发 第七天(运算符重载 智能指针)

目录 1.数组类 2.运算符重载 2.1加号运算符 2.1.1成员函数实现 2.1.2全局函数实现 2.1.3加号重载 2.2左移运算符 2.3递增运算符 2.4指针运算符 2.5赋值运算符 1.数组类 //默认构造函数 MyArray::MyArray() {m_Size 0;m_Capacity 100;pAddress new int[m_Capacity]…...

echarts地图的简单使用

echarts地图的简单使用 文章说明核心源码效果展示源码下载 文章说明 主要介绍echarts地图组件的简单使用&#xff0c;记录为文章&#xff0c;供后续查阅使用 目前只是简单的示例&#xff0c;然后还存在着一些小bug&#xff0c;主要是首个Legend的点击会导致颜色全部不展示的问题…...

Qt 项目优化实践方向

目录 1. 使用智能指针2. 避免在全局或静态作用域中使用裸指针3. 利用Qt的对象树进行资源管理4. 延迟加载和按需加载资源5. 合理使用Qt的资源文件&#xff08;qrc&#xff09;6. 监控和调试内存使用7. 优化数据结构8. 减少不必要的资源复制9. 使用缓存机制10. 遵循RAII原则 以下…...

常见的15个:自然语言处理(NLP)实战项目

自然语言处理&#xff08;NLP&#xff09;实战项目涵盖了从基础到高级的多个领域&#xff0c;以下是一些常见的NLP实战项目&#xff0c;每个项目都附带了简要的描述和可能用到的技术栈&#xff1a; 1. 文本分类&#xff08;Text Classification&#xff09; 描述: 将文本数据…...

CKKS同态加密通用函数近似方法和openFHE实现

摘要 同态加密可以直接在密文上进行运算&#xff0c;尤其是CKKS&#xff0c;可以直接在实数的密文上进行运算。服务器可以利用强大的计算能力&#xff0c;在不泄露用户隐私的情况下&#xff0c;为用户提供便捷的外包运算服务。然而&#xff0c;CKKS只能进行算术运算&#xff0…...

Webpack 5的新特性:Asset Modules与Dynamic Import

文章目录 Asset ModulesAsset Modules 类型配置示例分析 Dynamic Import动态导入语法配置示例分析 实际案例分析Asset Modules 实际案例Dynamic Import 实际案例 性能优化Asset Modules 性能优化Dynamic Import 性能优化 详细代码分析Asset Modules 代码分析Dynamic Import 代码…...

解释python requests包的timeout

解释python requests包的timeout 哈哈哈。。。。垃圾python又来了 1 问题 你能看懂下面两个timeout的含义就不用看下面的内容了。 requests.get(http://example.com, timeout(2, 5)) requests.get(http://127.0.0.1:5000/api,timeout1)官网解释&#xff01;&#xff01;&am…...

蒙语学习快速方法,速记蒙语单词怎么学习更高效!

要高效学习蒙古语和速记单词&#xff0c;首先要掌握基础知识&#xff0c;如字母表和发音规则。接着&#xff0c;专注于学习日常用语和基础词汇&#xff0c;并运用记忆技巧如联想、发音和构词法来帮助记忆。利用专门的学习软件&#xff0c;如“蒙语学习通”&#xff0c;可以提供…...

Vue3组件通信13种方法

在 Vue3 中,组件之间的通信是构建应用程序的关键 1. 父组件向子组件传递数据 (Props)「父组件:」「子组件:」 2. 子组件向父组件传递数据 (Emit)「父组件:」「子组件:」 3. 兄弟组件通信 (Mitt)「发送事件的组件:」「接收事件的组件:」 4. 透传 Attributes ($attrs)「父组件:」…...

Servlet入门:服务端小程序的初试(自己学习整理的资料)

目录 一.前言 二.建立基础结构​编辑 三.具体步骤 找到Tomcat文件并打开Tomcat。 在webapps中创建一个自己的文件夹。 在classes中新建一个Java文件。 在lib中导入需要的jar文件包。 配置环境变量 在Java文件的目录下打开cmd并输入 javac -d . HelloServlet.java进行…...

代码随想录算法训练营第三七天| 动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ 322. 零钱兑换

今日任务 动态规划&#xff1a;完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ 322. 零钱兑换 518.零钱兑换II 题目链接&#xff1a; . - 力扣&#xff08;LeetCode&#xff09; class Solution {public int change(int amount, int[] coins) {int[] dp new int[amount …...

[报错解决] 运行MATCHA时需要在线下载Arial.TTF字体,但是无法连接huggingface

一、报错详情 requests.exceptions.ConnectTimeout:(MaxRetryError("HTTPSConnectionPool(hosthuggingface.co, port443): Max retries exceeded with url: /ybelkada/fonts/resolve/main/Arial.TTF (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnec…...

B-树(不是B减树)原理剖析(1)

目录 B树的主要特性&#xff1a; B树的操作&#xff1a; B树的优点&#xff1a; 为什么要发明出B-树&#xff1f; B树的概念和原理剖析 原理图讲解(部分讲解在图中) 初始化结点&#xff1a; 处理数据数量计算(了解) 底层代码实现(加深理解) 前些日子我们学了AVl树&…...

【shell脚本8】Shell脚本学习--其他

目录 ​编辑 Shell输入输出重定向 重定向深入讲解 Here Document Shell输入输出重定向 Unix 命令默认从标准输入设备(stdin)获取输入&#xff0c;将结果输出到标准输出设备(stdout)显示。一般情况下&#xff0c;标准输入设备就是键盘&#xff0c;标准输出设备就是终端&…...

《深度学习》ResNet残差网络、BN批处理层 结构、原理详解

目录 一、关于ResNet 1、什么是ResNet 2、传统卷积神经网络存在的问题 1&#xff09;梯度消失和梯度爆炸问题 2&#xff09;训练困难 3&#xff09;特征表示能力受限 4&#xff09;模型复杂度和计算负担 3、如何解决 1&#xff09;解决梯度问题 BN层重要步骤&#xff1a; 2…...

javadoc:jdk 9通过javadoc API读取java源码中的注释信息(comment)

几年前写过一博客&#xff1a;《java:通过javadoc API读取java源码中的注释信息(comment)》&#xff0c;简单介绍了通过javadoc API读取源码注释的流程。 那时还是用JDK 1.8。但是在JDK9环境下JDK 1.8的那一套API就不能用了。JDK 9提供了一套新的javadoc API实现注释代码的读取…...

nordic使用FDS保存数据需要注意的地方

FDS使用常见问题 大家在使用FDS模块时,经常碰到的问题有如下几种: FDS不支持掉电保护,所以在Flash操作过程中出现了掉电,FDS行为将未知OTA的时候,新固件的FDS page数目一定要等于老固件的FDS page数,否则将出现不可知行为fds_record_write或者fds_record_update后,强烈…...

docker-compose集群(单机多节点)环境搭建与使用

此方案已经经过生产环境验证&#xff0c;可放心大胆使用如果喜欢&#xff0c;欢迎点赞&#x1f44d;收藏❤️评论噢&#xff5e; 略去 Docker 和 Docker Compose 安装部分,如果有需要的同学&#xff0c;可以评论&#xff0c;创建 docker-compose.yml 文件并配置 Nacos 集群和 M…...

从静态多态、动态多态到虚函数表、虚函数指针

多态&#xff08;Polymorphism&#xff09;是面向对象编程中的一个重要概念&#xff0c;它允许不同类的对象对同一消息做出不同的响应。多态性使得可以使用统一的接口来操作不同类的对象&#xff0c;从而提高了代码的灵活性和可扩展性。 一、多态的表现形式 1. 静态多态&…...

用 Pygame 实现一个乒乓球游戏

用 Pygame 实现一个乒乓球游戏 伸手需要一瞬间&#xff0c;牵手却要很多年&#xff0c;无论你遇见谁&#xff0c;他都是你生命该出现的人&#xff0c;绝非偶然。若无相欠&#xff0c;怎会相见。 引言 在这篇文章中&#xff0c;我将带领大家使用 Pygame 库开发一个简单的乒乓球…...

基于大数据可视化的化妆品推荐及数据分析系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目…...

Java项目实战II基于Java+Spring Boot+MySQL的汽车销售网站(文档+源码+数据库)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在数字化时…...