当前位置: 首页 > news >正文

常见的15个:自然语言处理(NLP)实战项目

自然语言处理(NLP)实战项目涵盖了从基础到高级的多个领域,以下是一些常见的NLP实战项目,每个项目都附带了简要的描述和可能用到的技术栈:

1. 文本分类(Text Classification)

  • 描述: 将文本数据分类到预定义的类别中,例如情感分析、垃圾邮件检测、新闻分类等。
  • 技术栈:
    • 模型: 朴素贝叶斯、支持向量机(SVM)、深度学习模型(如LSTM、BERT)
    • 工具: Scikit-learn、TensorFlow、PyTorch
    • 数据集: IMDB、2 Newsgroups、Twitter Sentiment Analysis

2. 命名实体识别(Named Entity Recognition, NER)

  • 描述: 从文本中识别出具有特定意义的实体,如人名、地名、组织名等。
  • 技术栈:
    • 模型: CRF(条件随机场)、BiLSTM-CRF、BERT-NER
    • 工具: SpaCy、NLTK、AllenNLP
    • 数据集: CoNLL-23、OntoNotes

3. 机器翻译(Machine Translation)

  • 描述: 将一种语言的文本自动翻译成另一种语言。
  • 技术栈:
    • 模型: Seq2Seq、Transformer、BERT-based models
    • 工具: OpenNMT、Fairseq、TensorFlow
    • 数据集: WMT、TED Talks

4. 问答系统(Question Answering System)

  • 描述: 根据用户的问题,从给定的文本中提取出准确的答案。
  • 技术栈:
    • 模型: BERT、RoBERTa、T5
    • 工具: Hugging Face Transformers、AllenNLP
    • 数据集: SQuAD、MS MARCO

5. 情感分析(Sentiment Analysis)

  • 描述: 分析文本中的情感倾向,如正面、负面或中性。
  • 技术栈:
    • 模型: LSTM、BERT、情感词典
    • 工具: VADER、TextBlob、TensorFlow
    • 数据集: Twitter Sentiment Analysis、IMDB

6. 文本生成(Text Generation)

  • 描述: 根据输入的文本生成新的文本,如自动写作、对话生成等。
  • 技术栈:
    • 模型: GPT-2、GPT-3、LSTM
    • 工具: Hugging Face Transformers、TensorFlow
    • 数据集: WikiText、BookCorpus

7. 关键词提取(Keyword Extraction)

  • 描述: 从文本中提取出最重要的关键词或短语。
  • 技术栈:
    • 模型: TF-IDF、TextRank、BERT
    • 工具: Gensim、RAKE、KeyBERT
    • 数据集: 自定义数据集

8. 文本摘要(Text Summarization)

  • 描述: 自动生成文本的摘要,保留主要信息。
  • 技术栈:
    • 模型: Seq2Seq、BERT、T5
    • 工具: Hugging Face Transformers、Sumy
    • 数据集: CNN/Daily Mail、XSum

9. 语音识别(Speech Recognition)

  • 描述: 将语音转换为文本。
  • 技术栈:
    • 模型: RNN-T、DeepSpeech、Wav2Vec 2.
    • 工具: Kaldi、DeepSpeech、PyTorch
    • 数据集: LibriSpeech、TIMIT

1. 聊天机器人(Chatbot)

  • 描述: 通过自然语言与用户进行交互,提供信息或服务。
  • 技术栈:
    • 模型: Seq2Seq、BERT、Transformer
    • 工具: Rasa、Dialogflow、TensorFlow
    • 数据集: 自定义对话数据集

11. 文本相似度(Text Similarity)

  • 描述: 计算两段文本之间的相似度。
  • 技术栈:
    • 模型: Siamese Networks、BERT、Cosine Similarity
    • 工具: Scikit-learn、Hugging Face Transformers
    • 数据集: Quora Question Pairs、STS Benchmark

12. 知识图谱构建(Knowledge Graph Construction)

  • 描述: 从文本中提取实体和关系,构建知识图谱。
  • 技术栈:
    • 模型: OpenIE、BERT、Graph Neural Networks
    • 工具: SpaCy、Neo4j、RDFLib
    • 数据集: Freebase、DBpedia

13. 文本纠错(Text Correction)

  • 描述: 自动检测并纠正文本中的拼写错误和语法错误。
  • 技术栈:
    • 模型: BERT、Seq2Seq、Transformer
    • 工具: LanguageTool、PySpelling、Hugging Face Transformers
    • 数据集: CoNLL-214、JFLEG

14. 文本聚类(Text Clustering)

  • 描述: 将相似的文本分组在一起,常用于文档分类。
  • 技术栈:
    • 模型: K-means、DBSCAN、BERT
    • 工具: Scikit-learn、Gensim
    • 数据集: 2 Newsgroups、Reuters

15. 情感追踪(Sentiment Tracking)

  • 描述: 实时分析社交媒体或新闻中的情感变化。
  • 技术栈:
    • 模型: LSTM、BERT、情感词典
    • 工具: Twitter API、TextBlob、TensorFlow
    • 数据集: Twitter Sentiment Analysis、新闻数据

   这些项目不仅可以帮助你深入理解NLP的各个方面,还可以通过实际应用提升你的编程和数据处理能力。每个项目都可以根据具体需求进展和优化。

相关文章:

常见的15个:自然语言处理(NLP)实战项目

自然语言处理(NLP)实战项目涵盖了从基础到高级的多个领域,以下是一些常见的NLP实战项目,每个项目都附带了简要的描述和可能用到的技术栈: 1. 文本分类(Text Classification) 描述: 将文本数据…...

CKKS同态加密通用函数近似方法和openFHE实现

摘要 同态加密可以直接在密文上进行运算,尤其是CKKS,可以直接在实数的密文上进行运算。服务器可以利用强大的计算能力,在不泄露用户隐私的情况下,为用户提供便捷的外包运算服务。然而,CKKS只能进行算术运算&#xff0…...

Webpack 5的新特性:Asset Modules与Dynamic Import

文章目录 Asset ModulesAsset Modules 类型配置示例分析 Dynamic Import动态导入语法配置示例分析 实际案例分析Asset Modules 实际案例Dynamic Import 实际案例 性能优化Asset Modules 性能优化Dynamic Import 性能优化 详细代码分析Asset Modules 代码分析Dynamic Import 代码…...

解释python requests包的timeout

解释python requests包的timeout 哈哈哈。。。。垃圾python又来了 1 问题 你能看懂下面两个timeout的含义就不用看下面的内容了。 requests.get(http://example.com, timeout(2, 5)) requests.get(http://127.0.0.1:5000/api,timeout1)官网解释!!&am…...

蒙语学习快速方法,速记蒙语单词怎么学习更高效!

要高效学习蒙古语和速记单词,首先要掌握基础知识,如字母表和发音规则。接着,专注于学习日常用语和基础词汇,并运用记忆技巧如联想、发音和构词法来帮助记忆。利用专门的学习软件,如“蒙语学习通”,可以提供…...

Vue3组件通信13种方法

在 Vue3 中,组件之间的通信是构建应用程序的关键 1. 父组件向子组件传递数据 (Props)「父组件:」「子组件:」 2. 子组件向父组件传递数据 (Emit)「父组件:」「子组件:」 3. 兄弟组件通信 (Mitt)「发送事件的组件:」「接收事件的组件:」 4. 透传 Attributes ($attrs)「父组件:」…...

Servlet入门:服务端小程序的初试(自己学习整理的资料)

目录 一.前言 二.建立基础结构​编辑 三.具体步骤 找到Tomcat文件并打开Tomcat。 在webapps中创建一个自己的文件夹。 在classes中新建一个Java文件。 在lib中导入需要的jar文件包。 配置环境变量 在Java文件的目录下打开cmd并输入 javac -d . HelloServlet.java进行…...

代码随想录算法训练营第三七天| 动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ 322. 零钱兑换

今日任务 动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ 322. 零钱兑换 518.零钱兑换II 题目链接: . - 力扣(LeetCode) class Solution {public int change(int amount, int[] coins) {int[] dp new int[amount …...

[报错解决] 运行MATCHA时需要在线下载Arial.TTF字体,但是无法连接huggingface

一、报错详情 requests.exceptions.ConnectTimeout:(MaxRetryError("HTTPSConnectionPool(hosthuggingface.co, port443): Max retries exceeded with url: /ybelkada/fonts/resolve/main/Arial.TTF (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnec…...

B-树(不是B减树)原理剖析(1)

目录 B树的主要特性&#xff1a; B树的操作&#xff1a; B树的优点&#xff1a; 为什么要发明出B-树&#xff1f; B树的概念和原理剖析 原理图讲解(部分讲解在图中) 初始化结点&#xff1a; 处理数据数量计算(了解) 底层代码实现(加深理解) 前些日子我们学了AVl树&…...

【shell脚本8】Shell脚本学习--其他

目录 ​编辑 Shell输入输出重定向 重定向深入讲解 Here Document Shell输入输出重定向 Unix 命令默认从标准输入设备(stdin)获取输入&#xff0c;将结果输出到标准输出设备(stdout)显示。一般情况下&#xff0c;标准输入设备就是键盘&#xff0c;标准输出设备就是终端&…...

《深度学习》ResNet残差网络、BN批处理层 结构、原理详解

目录 一、关于ResNet 1、什么是ResNet 2、传统卷积神经网络存在的问题 1&#xff09;梯度消失和梯度爆炸问题 2&#xff09;训练困难 3&#xff09;特征表示能力受限 4&#xff09;模型复杂度和计算负担 3、如何解决 1&#xff09;解决梯度问题 BN层重要步骤&#xff1a; 2…...

javadoc:jdk 9通过javadoc API读取java源码中的注释信息(comment)

几年前写过一博客&#xff1a;《java:通过javadoc API读取java源码中的注释信息(comment)》&#xff0c;简单介绍了通过javadoc API读取源码注释的流程。 那时还是用JDK 1.8。但是在JDK9环境下JDK 1.8的那一套API就不能用了。JDK 9提供了一套新的javadoc API实现注释代码的读取…...

nordic使用FDS保存数据需要注意的地方

FDS使用常见问题 大家在使用FDS模块时,经常碰到的问题有如下几种: FDS不支持掉电保护,所以在Flash操作过程中出现了掉电,FDS行为将未知OTA的时候,新固件的FDS page数目一定要等于老固件的FDS page数,否则将出现不可知行为fds_record_write或者fds_record_update后,强烈…...

docker-compose集群(单机多节点)环境搭建与使用

此方案已经经过生产环境验证&#xff0c;可放心大胆使用如果喜欢&#xff0c;欢迎点赞&#x1f44d;收藏❤️评论噢&#xff5e; 略去 Docker 和 Docker Compose 安装部分,如果有需要的同学&#xff0c;可以评论&#xff0c;创建 docker-compose.yml 文件并配置 Nacos 集群和 M…...

从静态多态、动态多态到虚函数表、虚函数指针

多态&#xff08;Polymorphism&#xff09;是面向对象编程中的一个重要概念&#xff0c;它允许不同类的对象对同一消息做出不同的响应。多态性使得可以使用统一的接口来操作不同类的对象&#xff0c;从而提高了代码的灵活性和可扩展性。 一、多态的表现形式 1. 静态多态&…...

用 Pygame 实现一个乒乓球游戏

用 Pygame 实现一个乒乓球游戏 伸手需要一瞬间&#xff0c;牵手却要很多年&#xff0c;无论你遇见谁&#xff0c;他都是你生命该出现的人&#xff0c;绝非偶然。若无相欠&#xff0c;怎会相见。 引言 在这篇文章中&#xff0c;我将带领大家使用 Pygame 库开发一个简单的乒乓球…...

基于大数据可视化的化妆品推荐及数据分析系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目…...

Java项目实战II基于Java+Spring Boot+MySQL的汽车销售网站(文档+源码+数据库)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在数字化时…...

数学基础 -- 微积分最优化之一个最简单的例子

微积分中的一个最简单的最优化例子 问题描述 假设你有一条长度为 10 米的栅栏&#xff0c;你需要围成一个矩形的鸡舍&#xff0c;使得围成的面积最大。求这个矩形的长和宽应是多少&#xff0c;以使得面积最大。 步骤 设定变量&#xff1a; 设矩形的长为 x x x 米&#xff0…...

kubernetes K8S 结合 Istio 实现流量治理

目录 1.Istio介绍&#xff1f; 1.1 Istio是什么&#xff1f; 1.2 Istio流量管理 1.2.1 熔断 1.2.2 超时 1.2.3 重试 2.Istio架构 3.istio组件详解 3.1 Pilot 3.2 Envoy 3.3 Citadel 3.4 Galley 3.5 Ingressgateway 3.5 egressgateway 扩展、k8s1.23及1.23以下版…...

Selenium with Python学习笔记整理(网课+网站持续更新)

本篇是根据学习网站和网课结合自己做的学习笔记&#xff0c;后续会一边学习一边补齐和整理笔记 非常推荐白月黑羽的学习网站&#xff1a; 白月黑羽 (byhy.net) https://selenium-python.readthedocs.io/getting-started.html#simple-usage WEB UI自动化环境配置 (推荐靠谱…...

1.随机事件与概率

第一章 随机时间与概率 1. 随机事件及其运算 1.1 随机现象 ​ 确定性现象&#xff1a;只有一个结果的现象 ​ 确定性现象&#xff1a;结果不止一个&#xff0c;且哪一个结果出现&#xff0c;人们事先并不知道 1.2 样本空间 ​ 样本空间&#xff1a;随机现象的一切可能基本…...

Redis结合Caffeine实现二级缓存:提高应用程序性能

本文将详细介绍如何使用CacheFrontend和Caffeine来实现二级缓存。 1. 简介 CacheFrontend: 是一种用于缓存的前端组件或服务。通俗的讲&#xff1a;该接口可以实现本地缓存与redis自动同步&#xff0c;如果本地缓存&#xff08;JVM级&#xff09;有数据&#xff0c;则直接从本…...

【LLM】Ollama:本地大模型 WebAPI 调用

Ollama 快速部署 安装 Docker&#xff1a;从 Docker 官网 下载并安装。 部署 Ollama&#xff1a; 使用以下命令进行部署&#xff1a; docker run -d -p 11434:11434 --name ollama --restart always ollama/ollama:latest进入容器并下载 qwen2.5:0.5b 模型&#xff1a; 进入 O…...

SpringBoot集成阿里easyexcel(二)Excel监听以及常用工具类

EasyExcel中非常重要的AnalysisEventListener类使用&#xff0c;继承该类并重写invoke、doAfterAllAnalysed&#xff0c;必要时重写onException方法。 Listener 中方法的执行顺序 首先先执行 invokeHeadMap() 读取表头&#xff0c;每一行都读完后&#xff0c;执行 invoke()方法…...

使用ELK Stack进行日志管理和分析:从入门到精通

在现代IT运维中&#xff0c;日志管理和分析是确保系统稳定性和性能的关键环节。ELK Stack&#xff08;Elasticsearch, Logstash, Kibana&#xff09;是一个强大的开源工具集&#xff0c;广泛用于日志收集、存储、分析和可视化。本文将详细介绍如何使用ELK Stack进行日志管理和分…...

前端框架对比与选择

&#x1f916; 作者简介&#xff1a;水煮白菜王 &#xff0c;一位资深前端劝退师 &#x1f47b; &#x1f440; 文章专栏&#xff1a; 前端专栏 &#xff0c;记录一下平时在博客写作中&#xff0c;总结出的一些开发技巧✍。 感谢支持&#x1f495;&#x1f495;&#x1f495; 目…...

Springboot jPA+thymeleaf实现增删改查

项目结构 pom文件 配置相关依赖&#xff1a; 2.thymeleaf有点类似于jstlel th:href"{url}表示这是一个链接 th:each"user : ${users}"相当于foreach&#xff0c;对user进行循环遍历 th:if进行if条件判断 {变量} 与 ${变量}的区别: 4.配置好application.ym…...

【YashanDB知识库】yashandb执行包含带oracle dblink表的sql时性能差

本文内容来自YashanDB官网&#xff0c;具体内容请见https://www.yashandb.com/newsinfo/7396959.html?templateId1718516 问题现象 yashandb执行带oracle dblink表的sql性能差&#xff1a; 同样的语句&#xff0c;同样的数据&#xff0c;oracle通过dblink访问远端oracle执行…...