当前位置: 首页 > news >正文

基于大数据可视化的化妆品推荐及数据分析系统

作者:计算机学姐
开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”

专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码

精品专栏:Java精选实战项目源码、Python精选实战项目源码、大数据精选实战项目源码

在这里插入图片描述

系统展示

【2025最新】基于大数据可视化+Hadoop+SpringBoot+Vue+MySQL的化妆品推荐及数据分析系统。

  • 开发语言:Java
  • 数据库:MySQL
  • 技术:SpringBoot、Hadoop、Vue、MyBatis-Plus
  • 工具:IDEA、Navicat

后台界面

管理员

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

商家

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

前台界面

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

摘要

  本文设计并实现了一个基于大数据可视化的化妆品推荐及数据分析系统。该系统集成了化妆品销售数据、用户行为数据及社交媒体反馈等多源数据,通过数据挖掘与机器学习算法,为用户提供个性化的化妆品推荐服务,并通过丰富的可视化界面展示销售趋势、用户偏好及推荐效果等关键信息。

研究意义

  随着电子商务的蓬勃发展,化妆品市场竞争日益激烈。精准推荐成为提升用户满意度、增加销售额的关键。本研究通过构建大数据可视化分析系统,不仅提高了化妆品推荐的精准度,还帮助企业深入理解市场需求,优化库存管理,增强市场竞争力。同时,系统的可视化功能增强了数据透明度,为企业决策提供了有力支持。

研究目的

  本研究旨在开发一个集化妆品数据收集、处理、分析与推荐于一体的综合系统。具体目标包括:构建高效的数据采集与清洗流程;应用先进的机器学习算法,实现个性化化妆品推荐;设计直观的数据可视化界面,展示销售趋势、用户画像及推荐效果评估;最终,为企业提供一个全方位、智能化的化妆品推荐及数据分析解决方案,助力其精准营销与决策。

文档目录

1.绪论
  1.1 研究背景
  1.2 研究意义
  1.3 研究现状
  1.4 研究内容
2.相关技术
  2.1 Java语言
  2.2 B/S架构
  2.3 MySQL数据库
  2.4 SpringBoot框架
  2.5 Vue框架
3.系统分析
  3.1 系统可行性分析
    3.1.1 技术可行性分析
    3.1.2 经济可行性分析
    3.1.3 操作可行性分析
  3.2 系统性能分析
    3.2.1 易用性指标
    3.2.2 可扩展性指标
    3.2.3 健壮性指标
    3.2.4 安全性指标
  3.3 系统流程分析
    3.3.1 操作流程分析
    3.3.2 登录流程分析
    3.3.3 信息添加流程分析
    3.3.4 信息删除流程分析
  3.4 系统功能分析
4.系统设计
  4.1 系统概要设计
  4.2 系统功能结构设计
  4.3 数据库设计
    4.3.1 数据库E-R图设计
    4.3.2 数据库表结构设计
5.系统实现
  5.1 前台功能实现
  5.2 后台功能实现
6.系统测试
  6.1 测试目的及方法
  6.2 系统功能测试
    6.2.1 登录功能测试
    6.2.2 添加功能测试
    6.2.3 删除功能测试
  6.3 测试结果分析

代码

# Tomcat
server:tomcat:uri-encoding: UTF-8port: 8080servlet:context-path: /springboot72879yi3#name-node
hadoop.name-node: hdfs://localhost:9000
#hdfs目录
hadoop.namespace: /dataspring:datasource:driverClassName: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://127.0.0.1:3306/?useUnicode=true&characterEncoding=utf-8&useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=GMT%2B8&useSSL=falseusername: rootpassword: 123456servlet:multipart:max-file-size: 300MBmax-request-size: 300MBresources:static-locations: classpath:static/,file:static/#mybatis
mybatis-plus:mapper-locations: classpath*:mapper/*.xml#实体扫描,多个package用逗号或者分号分隔typeAliasesPackage: com.entityglobal-config:#主键类型  0:"数据库ID自增", 1:"用户输入ID",2:"全局唯一ID (数字类型唯一ID)", 3:"全局唯一ID UUID";id-type: 1#字段策略 0:"忽略判断",1:"非 NULL 判断"),2:"非空判断"field-strategy: 1#驼峰下划线转换db-column-underline: true#刷新mapper 调试神器refresh-mapper: true#逻辑删除配置logic-delete-value: -1logic-not-delete-value: 0#自定义SQL注入器sql-injector: com.baomidou.mybatisplus.mapper.LogicSqlInjectorconfiguration:map-underscore-to-camel-case: truecache-enabled: falsecall-setters-on-nulls: true#springboot 项目mybatis plus 设置 jdbcTypeForNull (oracle数据库需配置JdbcType.NULL, 默认是Other)jdbc-type-for-null: 'null' 

总结

  本研究成功开发了基于大数据可视化的化妆品推荐及数据分析系统,实现了化妆品数据的深度挖掘与个性化推荐,并通过可视化界面直观展示了关键分析结果。系统不仅提升了化妆品推荐的精准性与用户体验,还为企业提供了丰富的数据洞察与决策支持。该系统的实施验证了大数据与可视化技术在化妆品行业的巨大潜力,为行业智能化转型提供了有力支持。

获取源码

一键三连噢~

相关文章:

基于大数据可视化的化妆品推荐及数据分析系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…...

Java项目实战II基于Java+Spring Boot+MySQL的汽车销售网站(文档+源码+数据库)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在数字化时…...

数学基础 -- 微积分最优化之一个最简单的例子

微积分中的一个最简单的最优化例子 问题描述 假设你有一条长度为 10 米的栅栏,你需要围成一个矩形的鸡舍,使得围成的面积最大。求这个矩形的长和宽应是多少,以使得面积最大。 步骤 设定变量: 设矩形的长为 x x x 米&#xff0…...

kubernetes K8S 结合 Istio 实现流量治理

目录 1.Istio介绍? 1.1 Istio是什么? 1.2 Istio流量管理 1.2.1 熔断 1.2.2 超时 1.2.3 重试 2.Istio架构 3.istio组件详解 3.1 Pilot 3.2 Envoy 3.3 Citadel 3.4 Galley 3.5 Ingressgateway 3.5 egressgateway 扩展、k8s1.23及1.23以下版…...

Selenium with Python学习笔记整理(网课+网站持续更新)

本篇是根据学习网站和网课结合自己做的学习笔记,后续会一边学习一边补齐和整理笔记 非常推荐白月黑羽的学习网站: 白月黑羽 (byhy.net) https://selenium-python.readthedocs.io/getting-started.html#simple-usage WEB UI自动化环境配置 (推荐靠谱…...

1.随机事件与概率

第一章 随机时间与概率 1. 随机事件及其运算 1.1 随机现象 ​ 确定性现象:只有一个结果的现象 ​ 确定性现象:结果不止一个,且哪一个结果出现,人们事先并不知道 1.2 样本空间 ​ 样本空间:随机现象的一切可能基本…...

Redis结合Caffeine实现二级缓存:提高应用程序性能

本文将详细介绍如何使用CacheFrontend和Caffeine来实现二级缓存。 1. 简介 CacheFrontend: 是一种用于缓存的前端组件或服务。通俗的讲:该接口可以实现本地缓存与redis自动同步,如果本地缓存(JVM级)有数据,则直接从本…...

【LLM】Ollama:本地大模型 WebAPI 调用

Ollama 快速部署 安装 Docker:从 Docker 官网 下载并安装。 部署 Ollama: 使用以下命令进行部署: docker run -d -p 11434:11434 --name ollama --restart always ollama/ollama:latest进入容器并下载 qwen2.5:0.5b 模型: 进入 O…...

SpringBoot集成阿里easyexcel(二)Excel监听以及常用工具类

EasyExcel中非常重要的AnalysisEventListener类使用,继承该类并重写invoke、doAfterAllAnalysed,必要时重写onException方法。 Listener 中方法的执行顺序 首先先执行 invokeHeadMap() 读取表头,每一行都读完后,执行 invoke()方法…...

使用ELK Stack进行日志管理和分析:从入门到精通

在现代IT运维中,日志管理和分析是确保系统稳定性和性能的关键环节。ELK Stack(Elasticsearch, Logstash, Kibana)是一个强大的开源工具集,广泛用于日志收集、存储、分析和可视化。本文将详细介绍如何使用ELK Stack进行日志管理和分…...

前端框架对比与选择

🤖 作者简介:水煮白菜王 ,一位资深前端劝退师 👻 👀 文章专栏: 前端专栏 ,记录一下平时在博客写作中,总结出的一些开发技巧✍。 感谢支持💕💕💕 目…...

Springboot jPA+thymeleaf实现增删改查

项目结构 pom文件 配置相关依赖: 2.thymeleaf有点类似于jstlel th:href"{url}表示这是一个链接 th:each"user : ${users}"相当于foreach,对user进行循环遍历 th:if进行if条件判断 {变量} 与 ${变量}的区别: 4.配置好application.ym…...

【YashanDB知识库】yashandb执行包含带oracle dblink表的sql时性能差

本文内容来自YashanDB官网,具体内容请见https://www.yashandb.com/newsinfo/7396959.html?templateId1718516 问题现象 yashandb执行带oracle dblink表的sql性能差: 同样的语句,同样的数据,oracle通过dblink访问远端oracle执行…...

效率工具推荐 | 高效管理客服中心知识库

人工智能AI的广泛应用,令AI知识库管理已成为优化客服中心运营的核心策略之一。一个高效、易用且持续更新的知识库不仅能显著提升客服代表的工作效率,还能极大提升客户的服务体验。而高效效率工具如HelpLook,能够轻松搭建AI客服帮助中心&#…...

综合实验1 利用OpenCV统计物体数量

一、实验简介 传统的计数方法常依赖于人眼目视计数,不仅计数效率低,且容易计数错误。通常现实中的对象不会完美地分开,需要通过进一步的图像处理将对象分开并计数。本实验巩固对OpenCV的基础操作的使用,适当的增加OpenCV在图像处…...

[Redis][主从复制][上]详细讲解

目录 0.前言1.配置1.建立复制2.断开复制3.安全性4.只读5.传输延迟 2.拓扑1.一主一从结构2.一主多从结构2.树形主从结构 0.前言 说明:该章节相关操作不需要记忆,理解流程和原理即可,用的时候能自主查到即可主从复制? 分布式系统中…...

【算法】leetcode热题100 146.LRU缓存. container/list用法

https://leetcode.cn/problems/lru-cache/description/?envTypestudy-plan-v2&envIdtop-100-liked 实现语言:go lang LRU 最近最少未使用,是一种淘汰策略,当缓存空间不够使用的时候,淘汰一个最久没有访问的存储单元。目前…...

[论文总结] 深度学习在农业领域应用论文笔记13

文章目录 1. Downscaling crop production data to fine scale estimates with geostatistics and remote sensing: a case study in mapping cotton fibre quality (Precision Agriculture ,2024, IF5.585)背景方法结果结论个人总…...

《Detection of Tea Leaf Blight in Low-Resolution UAV Remote Sensing Images》论文阅读

学习资料 论文题目:Detection of Tea Leaf Blight in Low-Resolution UAV Remote Sensing Images(低分辨率UAV遥感图像中茶叶枯萎病的检测)论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp&arnumber10345618 Abstr…...

低代码BPA(业务流程自动化)技术探讨

一、BPA流程设计平台的特点 可视化设计工具 大多数BPA流程设计平台提供直观的拖拽式界面,用户可以通过图形化方式设计、修改及优化业务流程。这种可视化的方式不仅降低了门槛,还便于非技术人员理解和参与流程设计。集成能力 现代BPA平台通常具备与其他系…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

ES6从入门到精通:前言

ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

LLMs 系列实操科普(1)

写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...