当前位置: 首页 > news >正文

Structure-Aware Transformer for Graph Representation Learning

Structure-Aware Transformer for Graph Representation Learning(ICML22)

在这里插入图片描述

摘要

Transformer 架构最近在图表示学习中受到越来越多的关注,因为它通过避免严格的结构归纳偏差而仅通过位置编码对图结构进行编码,自然地克服了图神经网络(GNN)的一些限制。 在这里,我们表明由 Transformer 使用位置编码生成的节点表示不一定捕获它们之间的结构相似性。 为了解决这个问题,我们提出了 Structure-Aware Transformer,这是一类基于新的自注意力机制的简单而灵活的图形 Transformer。 这种新的自注意力通过在计算注意力之前提取以每个节点为根的子图表示,将结构信息合并到原始自注意力中。 我们提出了几种自动生成子图表示的方法,并从理论上证明所得到的表示至少与子图表示一样具有表现力。

介绍

Transformers (Vaswani et al., 2017),已被证明在自然语言理解 (Vaswani et al., 2017)、计算机视觉 (Dosovitskiy et al., 2020) 和生物序列建模 (Rives et al., 2020) 方面取得了成功。 2021),提供了解决这些问题的潜力。
Transformer 架构不仅仅在消息传递机制中聚合本地邻域信息,而是能够通过单个自注意力层捕获任何节点对之间的交互信息。 此外,与 GNN 相比,Transformer 避免在中间层引入任何结构归纳偏差,从而解决了 GNN 的表达能力限制。 相反,它将有关节点的结构或位置信息仅编码为输入节点特征,尽管限制了它可以从图结构中学习的信息量。 因此,将有关图结构的信息集成到 Transformer 架构中在图表示学习领域获得了越来越多的关注。 然而,大多数现有方法仅对节点之间的位置关系进行编码,而不是对结构关系进行显式编码。 因此,它们可能无法识别节点之间的结构相似性,并且可能无法对节点之间的结构交互进行建模。
在这里插入图片描述
上图中节点u,v的位置编码是相同的,因为这两个节点到相邻节点的最近距离都相同,可是他们的结构编码是不同的。

本文贡献

本文引入一种灵活的结构感知自注意力机制,该机制明确考虑图结构,从而捕获节点之间的结构交互。 由此产生的 Transformer 类,我们称之为结构感知 Transformer (SAT),可以提供图的结构感知表示,这与大多数现有的用于图结构数据的位置感知 Transformer 不同。

  1. 重新表述了 Vaswani 等人的自注意力机制。 (2017)作为内核平滑器,并通过提取以每个节点为中心的子图表示,扩展节点特征上的原始指数内核以也考虑局部结构。
  2. 提出了几种自动生成子图表示的方法,使生成的内核更平滑,能够同时捕获节点之间的结构和属性相似性。 理论上保证得到的表示至少与子图表示一样具有表达能力。

背景

在这里插入图片描述
输入交互图和用户和物品的嵌入表示X。

基于transformer的图

在这里插入图片描述
再经过残差链接和前馈网络
在这里插入图片描述

绝对编码
绝对编码是指在主Transformer模型之前,将图形的位置或结构表示添加或连接到输入节点特征,例如拉普拉斯位置编码(Dwivedi & Bresson,2021)或RWPE(Dwivedi等人,2022年)的报告。这些编码方法的主要缺点是,它们通常不提供节点与其邻域之间的结构相似性的度量

自注意作为核平滑

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

结构感知Transformer

1. 结构感知自注意力

采用上述的自注意作为核平滑,公式如下:
在这里插入图片描述
此处的注意力计算方式不再是单个节点的嵌入,而是这个节点构成的子图。
在这里插入图片描述
kgraph核函数是两个子图嵌入的点积,子图的抽取如下:

  1. k-subtree GNN extractor
    在这里插入图片描述

简而言之:将用户物品嵌入通过k层GNN最终获取节点u的嵌入,即时u的k-subtree(子图)

  1. k-subgraph GNN extractor
    在这里插入图片描述

简而言之:将节点u的所有邻居的k-subtree相加就是节点u的k-subgraph

结构感知Transformer

在这里插入图片描述

在这里插入图片描述

与绝对编码的组合

相关文章:

Structure-Aware Transformer for Graph Representation Learning

Structure-Aware Transformer for Graph Representation Learning(ICML22) 摘要 Transformer 架构最近在图表示学习中受到越来越多的关注,因为它通过避免严格的结构归纳偏差而仅通过位置编码对图结构进行编码,自然地克服了图神经…...

滚动页面,el-table表头始终置顶

效果如下: 起始状态: 滚动后: 代码地址:代码地址-面包多...

Mac使用gradle编译springboot-2.7.x源码

1 开发环境: JDK8 ideaIU-2024.2.2 gradle-7.6.3 代理网络 2 下载springboot源码 代码仓库网址 git clone -b 2.7.x https://github.com/spring-projects/spring-boot.git3 安装gradle gradle下载网址 https://services.gradle.org/distributions/ 安装此文件指…...

MySQL --索引(下)

文章目录 6.索引操作6.1 创建主键索引6.2 创建唯一索引6.3 创建普通索引6.4 创建全文索引6.5 查询索引6.6 删除索引6.7 索引创建原则6.8 复合索引6.9 索引最左匹配原则6.10 索引覆盖 6.索引操作 6.1 创建主键索引 第一种方式: – 在创建表的时候,直接…...

选择寄宿学校,给自闭症孩子一个温暖的第二家

在寻找适合自闭症孩子成长的道路上,每一个家庭都充满了艰辛与希望。而广州市星贝育园康复中心,以其独特的全托寄宿制教育模式,为这些特殊的孩子提供了一个充满爱与关怀的“第二家”。在这里,孩子们不仅能够得到专业的康复训练&…...

大模型训练:K8s 环境中数千节点存储最佳实践

今天这篇博客来自全栈工程师朱唯唯,她在前不久举办的 KubeCon 中国大会上进行了该主题分享。 Kubernetes 已经成为事实的应用编排标准,越来越多的应用在不断的向云原生靠拢。与此同时,人工智能技术的迅速发展,尤其是大型语言模型&…...

【Linux学习】1-2 新建虚拟机ubuntu环境

1.双击打开VMware软件,点击“创建新的虚拟机”,在弹出的中选择“自定义(高级)” 2.点击下一步,自动识别ubuntu光盘映像文件,也可以点击“浏览”手动选择,点击下一步 3.设置名称及密码后&#xf…...

ftdi_sio驱动学习笔记 3 - 端口操作

目录 1. ftdi_port_probe 1.1 私有数据结构ftdi_private 1.2 特殊probe处理 1.3 确定FTDI设备类型 1.4 确定最大数据包大小 1.5 设置读取延迟时间 1.6 初始化GPIO 1.6.1 使能GPIO 1.6.2 添加到系统 1.6.2.1 设置GPIO控制器的基本信息 1.6.2.2 设置GPIO控制器的元信息…...

[leetcode]39_组合总和_给定数组且数组可重复

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的数字可以无限制重复被选取。说明: 所有数字(包括 target)都是正整数。 解集不能包含重复的组合…...

【笔记】第三节 组织与性能

3.1 基本成分 3.2 微观组织特征 0.6-0.8C%碳素钢的组织为珠光体和少量的铁素体。 如何把组织和性能联系起来?德国克虏伯公司的研究——珠光体片间距与渗碳体片层厚度成比例: t s 0 ( ρ 15 ( C % ) − 1 ) ts_0(\frac{\rho}{15(C\%)}-1) ts0​(15(C%)…...

数据库——sql语言学习 查找语句

一、什么是sql SQL是结构化查询语言(Structured Query Language)的缩写,它是一种专门为数据库设计的操作命令集,用于管理关系数据库管理系统(RDBMS)。 二、查找相关语句 ‌‌首先,我们已经设…...

【计算机网络 - 基础问题】每日 3 题(二十三)

✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/fYaBd 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏&…...

JPA + Thymeleaf 增删改查

一、 什么是 Thymeleaf JPA(Java Persistence API):是一种用于对象关系映射(ORM)的 Java 规范,它简化了数据库操作,使开发者可以以面向对象的方式处理数据存储。通过定义实体类和数据访问接口&a…...

Android常用C++特性之std::this_thread

声明:本文内容生成自ChatGPT,目的是为方便大家了解学习作为引用到作者的其他文章中。 std::this_thread 是 C11 标准库中的一个命名空间,提供了一组与当前线程(即调用这些函数的线程)相关的操作。通过 std::this_threa…...

成语700词(31~45组)

目录 31.对待错误的态度(12 个)32.改变与不变(19 个)33.顺势造势(6 个)34.自然会发生(6 个)35.提早准备和补救(11 个)36.办公、管理相关(8 个)37.空谈与虚幻(8 个)38.来者众多(11 个)39.人多热闹(6)40.好坏掺杂(7 个)41.流行与名声(14 个)42.与传播、传闻…...

vue3组件通信(组合式API)

vue3组件通信(组合式API) vue3组件通信,采用组合式API。选项式API,参看官网 Vue3组件通信和Vue2的区别: 移出事件总线,使用mitt代替。 vuex换成了pinia。把.sync优化到了v-model里面了。把$listeners所…...

从预测性维护到智能物流:ARM边缘计算控制器的工业实践

工业4.0时代的到来,边缘计算技术成为连接物理世界与数字世界的桥梁。ARM架构的边缘计算控制器凭借其低功耗、高能效和灵活性等特点,在工业自动化领域展现出巨大潜力。本文将通过几个实际应用案例来探讨ARM边缘计算控制器是如何提升生产线效率和安全性的&…...

2024年汉字小达人区级自由报名备考冲刺:最新问题和官模题练一练

今天是2024年第十一届汉字小达人的区级自由报名活动的第二天。 我们继续回答几个关于汉字小达人的最新问题,做几道2024年官方模拟题,帮助孩子们少走弯路,再冲刺一般,更精准地备考2024年汉字小达人。 【温馨提示】本专题在比赛期…...

Linux相关概念和重要知识点(8)(操作系统、进程的概念)

1.操作系统(OS) (1)基本结构的认识 任何计算机系统都包含一个基本的程序集合,用于实现计算机最基本最底层的操作,这个软件称为操作系统。操作系统大部分使用C语言编写,少量使用汇编语言。 从…...

测序技术--组蛋白甲基化修饰、DNA亲和纯化测序,教授(优青)团队指导:从实验设计、结果分析到SCI论文辅助

组蛋白甲基化修饰工具(H3K4me3 ChIP-seq)组蛋白甲基化类型也有很多种,包括赖氨酸甲基化位点H3K4、H3K9、H3K27、H3K36、H3K79和H4K20等。组蛋白H3第4位赖氨酸的甲基化修饰(H3K4)在进化上高度保守,是被研究最多的组蛋白修饰之一。 DNA亲和纯化测序 DNA亲…...

Llama 3.2来了,多模态且开源!AR眼镜黄仁勋首批体验,Quest 3S头显价格低到离谱

如果说 OpenAI 的 ChatGPT 拉开了「百模大战」的序幕,那 Meta 的 Ray-Ban Meta 智能眼镜无疑是触发「百镜大战」的导火索。自去年 9 月在 Meta Connect 2023 开发者大会上首次亮相,短短数月,Ray-Ban Meta 就突破百万销量,不仅让马…...

软考高级:SOA 和微服务 AI 解读

概念讲解 SOA(面向服务架构)和微服务虽然都是服务架构的设计模式,但它们的侧重点和实现方式有很大区别。为了帮助你理解这两个概念,我们可以从生活中的例子、概念本身的讲解以及记忆方法三方面入手。 生活化例子 **SOA&#xf…...

【每天学个新注解】Day 6 Lombok注解简解(五)—@SneakyThrows

SneakyThrows 简化异常处理 并不建议日常开发中通过此注解解决异常捕获问题!!! 允许方法抛出检查型异常而无需显式声明或捕获这些异常。这对于那些不希望在方法签名中声明异常或不愿意编写复杂的 try-catch 块的场景非常有用。 使用 SneakyT…...

C语言 | Leetcode C语言题解之第437题路径总和III

题目: 题解: /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ //递归遍历树节点,判断是否为有效路径 int dfs(struct TreeNode * root, int ta…...

Linux-TCP重传

问题描述: 应用系统进行切换,包含业务流量切换(即TongWeb主备切换)和MYSQL数据库主备切换。首先进行流量切换,然后进行数据库主备切换。切换后发现备机TongWeb上有两批次慢请求,第一批慢请求响应时间在133…...

Python通过Sqlalchemy框架实现增删改查

目录 简介 什么是SQLAlchemy? SQLAlchemy可以分为两个部分:Core和ORM。 一、首先安装sqlalchemy 二、在配置文件中添加数据库连接信息,我这里是Mysql 三、 创建数据库连接类,我这里是动态读取数据库的表字段,自动…...

windows C++ - 任务计划程序(并发运行时)

如果希望微调并发运行时的现有代码的性能,则任务计划程序会很有用。 无法从通用 Windows 平台 (UWP) 应用获取任务计划程序。 在 Visual Studio 2015 及更高版本中,concurrency::task 类和 ppltasks.h 中的相关类型使用 Windows 线程池作为其计划程序。…...

多米诺骨牌(模拟)

初始化数据结构: 使用一个布尔数组 arr 来表示每个位置是否被占用。初始时所有位置均为 false(未占用)。使用一个 LinkedHashMap(命名为 queue)来记录最近的 R 操作的位置。这个结构可以保持插入顺序,方便后…...

Unity DOTS系列之Struct Change核心机制分析

最近DOTS发布了正式的版本, 我们来分享一下DOTS里面Struct Change机制,方便大家上手学习掌握Unity DOTS开发。 基于ArchType与Chunk的Entity管理机制 我们回顾以下ECS的内存管理核心机制,基于ArchTypeChunk的Entity管理模式。每个Entity不直接存放数据&#xff0c…...

「数组」定长滑动窗口|不定长滑动窗口 / LeetCode 2461|2958(C++)

目录 概述 1.定长滑动窗口 思路 复杂度 Code 2.不定长滑动窗口 思路 复杂度 Code 总结 概述 在双指针合集中,我们介绍了双指针算法: 「数组」数组双指针算法合集:二路合并|逆向合并|快慢去重|对撞指针 / LeetCode 88|26|11&#…...