当前位置: 首页 > news >正文

随记——机器学习

前言

本来有个500块钱的单子,用机器学习做一个不知道什么鸟的识别,正好有数据集,跑个小项目,过一下机器学习图像识别的流程,用很短的时间记录下来.....

一、数据预处理

将数据集分为训练集和测试集,直接使用sklearn库就行,这是一个机器学习的库,我就知道这么多,能用就用上,怎么用,组织好prompt问gpt就好了,也足够了.....

使用train_test_split了解了一个参数,想了两个问题,记录一下吧!

random_state=42train_test_split 函数中的一个参数,用于控制随机数生成器的种子。

作用:

  1. 可重复性:设置随机种子后,每次运行代码时,数据集的划分结果(训练集和测试集的样本)都是相同的。这在调试和实验时非常重要,可以确保你得到一致的结果。

  2. 随机性:当你不设置 random_state(或者将其设为 None)时,train_test_split 每次运行可能会产生不同的训练集和测试集。这可能导致模型的性能评估不一致。

为什么是42?

42 常被用作随机数生成的“宇宙的终极答案”,这个数字在编程和数学中有一种幽默的文化象征。实际上,你可以选择任何整数作为种子,使用相同的种子将得到相同的划分结果。因此,选择42只是一个约定,任何其他整数都可以达到相同的效果。

from sklearn.model_selection import train_test_split
import os
import numpy as np
import cv2# 定义数据集的路径
dataset_path = './syh'  # 替换为你的小狗图片数据集的路径# 获取数据集中的所有图片文件名
all_images = [f for f in os.listdir(dataset_path) if f.endswith('.jpg') or f.endswith('.png')]
all_image_paths = [os.path.join(dataset_path, img) for img in all_images]# 使用train_test_split将数据集分为训练集和测试集
train_images, test_images = train_test_split(all_image_paths, test_size=0.1, random_state=42)
print(train_images)
print(test_images)

二、提取特征和标签

这个代码注意一下几点:

1、提取特征点有很多种方法,由于之前搞过视觉slam,知道slam系统的原理所以知道一些,这里用的是ORB,是因为情怀,我第一个slam系统就是ORB-slam,大家也可以试试其他SIFT、‌SURF等等.....

2、因为任务是识别是不是就ok了,我的label是随机0和1,但是图片应该都是正标签,我懒得找负标签了,大家可以多种类的话,标签是文件夹名称就好了(要改一下数据预处理的代码哦),可以改一下试试......

3、描述子我只取了前100个展平,是因为在对高维度list列表进行转换时,里面的子列表长度不同导致转换成numpy的失败,后续可以试试弄一个很长的全是0的去填充,效果可能会好,毕竟“特征”多了嘛.....

# 提取特征和标签
def extract_features(image_paths):features = []labels = []orb = cv2.ORB_create()  # 创建ORB特征检测器for img_path in image_paths:img = cv2.imread(img_path)  # 读取图像gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转为灰度图keypoints, descriptors = orb.detectAndCompute(gray, None)  # 提取关键点和描述符if descriptors is not None:  # 如果有描述符# 仅保留前N个特征,或对描述符进行处理features.append(descriptors[:100].flatten())  # 保留前100个描述符并展平random_labels = np.random.randint(0, 2)labels.append(random_labels)  # 假设标签为文件名的前缀return np.array(features), np.array(labels)# 提取训练集和测试集的特征
X_train, y_train = extract_features(train_images)
print(X_train)
print(y_train)
X_test, y_test = extract_features(test_images)
print(X_test)
print(y_test)

三、定义模型、训练模型、推理模型

使用直接使用sklearn库,几行代码就ok了,刚开始学习的我建议,点进去看看源码(我没看过,有时间看看吧,不过估计过段时间就忘了,不会看的),根据自己掌握的原理,看看代码中模型是怎么定义的,用相同的数据集,可以看看这三个在图像识别上哪个效果好,有时候简单的任务可以直接用机器学习解决的最好用,就跟搞对象一样,合适才是最好的,哈哈哈!

from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score# 定义并训练SVM分类器
svm_classifier = SVC(kernel='linear')  # 使用线性核SVM
svm_classifier.fit(X_train, y_train)  # 训练模型
y_pred_svm = svm_classifier.predict(X_test)  # 对测试集进行预测
accuracy_svm = accuracy_score(y_test, y_pred_svm)  # 计算准确率
print(f"SVM测试集准确率: {accuracy_svm * 100:.2f}%")  # 输出准确率# 定义并训练决策树分类器
dt_classifier = DecisionTreeClassifier()  # 创建决策树分类器
dt_classifier.fit(X_train, y_train)  # 训练模型
y_pred_dt = dt_classifier.predict(X_test)  # 对测试集进行预测
accuracy_dt = accuracy_score(y_test, y_pred_dt)  # 计算准确率
print(f"决策树测试集准确率: {accuracy_dt * 100:.2f}%")  # 输出准确率# 定义并训练KNN分类器
knn_classifier = KNeighborsClassifier(n_neighbors=3)  # 使用KNN分类器,选择邻居数为3
knn_classifier.fit(X_train, y_train)  # 训练模型
y_pred_knn = knn_classifier.predict(X_test)  # 对测试集进行预测
accuracy_knn = accuracy_score(y_test, y_pred_knn)  # 计算准确率
print(f"KNN测试集准确率: {accuracy_knn * 100:.2f}%")  # 输出准确率

相关文章:

随记——机器学习

前言 本来有个500块钱的单子,用机器学习做一个不知道什么鸟的识别,正好有数据集,跑个小项目,过一下机器学习图像识别的流程,用很短的时间记录下来..... 一、数据预处理 将数据集分为训练集和测试集,直接…...

【在Linux世界中追寻伟大的One Piece】进程间通信

目录 1 -> 进程间通信介绍 1.1 -> 进程间通信目的 1.2 -> 进程间通信发展 1.3 -> 进程间通信分类 1.3.1 -> 管道 1.3.2 -> System V IPC 1.3.3 -> POSIX IPC 2 -> 管道 2.1 -> 什么是管道 2.2 -> 匿名管道 2.3 -> 实例代码 2.4 -…...

多路复用IO

一。进程处理多路IO请求 在没有多路复用IO之前,对于多路IO请求,一般只有阻塞与非阻塞IO两种方式 1.1 阻塞IO 需要结合多进程/多线程,每个进程/线程处理一路IO 缺点:客户端越多,需要创建的进程/线程越多&#xff0c…...

C++ prime plus-7-編程練習

1&#xff0c; #include <iostream>// 函数声明 double harmonicMean(double x, double y);int main() {double x, y, result;while (true) {std::cout << "请输入两个数&#xff08;其中一个为0时结束&#xff09;: ";std::cin >> x >> y;…...

计算1 / 1 - 1 / 2 + 1 / 3 - 1 / 4 + 1 / 5 …… + 1 / 99 - 1 / 100 的值,打印出结果

我们写这道题的时候需要俩变量接受&#xff0c;一个总数一个分母&#xff0c;我们发现分母变化是有规律的从1~100循环。 #include<stdio.h> int main() {int i 0;int tag 1;double sum 0.0;for (i 1; i < 101; i){if (i % 2 0){sum sum - 1.0 / i;}else{sum s…...

Linux本地服务器搭建开源监控服务Uptime Kuma与远程监控实战教程

文章目录 前言**主要功能**一、前期准备本教程环境为&#xff1a;Centos7&#xff0c;可以跑Docker的系统都可以使用本教程安装。本教程使用Docker部署服务&#xff0c;如何安装Docker详见&#xff1a; 二、Docker部署Uptime Kuma三、实现公网查看网站监控四、使用固定公网地址…...

JS 历史简介

目录 1. JS 历史简介 2. JS 技术特征 1. JS 历史简介 举例&#xff1a;在提交用户的注册信息的时候&#xff0c;为避免注册出现错误后重新填写信息&#xff0c;可以在写完一栏信息后进行校验&#xff0c;并提示是否出现错误&#xff0c;这样会大大提高用户提交的成功率&…...

爬虫逆向学习(七):补环境动态生成某数四代后缀MmEwMD

声明&#xff1a;本篇文章内容是整理并分享在学习网上各位大佬的优秀知识后的实战与踩坑记录 前言 这篇文章主要是研究如何动态生成后缀参数MmEwMD的&#xff0c;它是在文章爬虫逆向学习(六)&#xff1a;补环境过某数四代的基础上进行研究的&#xff0c;代码也是在它基础上增…...

光伏电站并网验收需要注意什么细节

一、设备质量及安装验收 光伏组件&#xff1a;检查光伏组件的外观是否完好无损&#xff0c;无明显的缺陷和破损&#xff0c;表面是否清洁无污染。同时&#xff0c;需要验证光伏组件的型号、参数是否与设备台账资料一致。 逆变器&#xff1a;确认逆变器具备防雷、防尘、防潮等…...

页面禁用鼠标右键属于反爬虫措施吗 ?

是的&#xff0c;禁用鼠标右键通常被视为一种反爬虫&#xff08;anti-scraping&#xff09;措施。网站开发者常常采用这种技术来防止用户通过右键菜单复制文本、图像或其他内容&#xff0c;特别是在内容保护和数据安全方面。以下是禁用鼠标右键的一些背景和目的&#xff1a; 1…...

视频理解大模型最新进展

文章目录 Video-LLaMAVision-Language BranchAudio-Language Branch Video-ChatGPTMiniGPT4-videoCogVLM2-Video&#xff08;1&#xff09;Pre-training&#xff08;2&#xff09;Post-training Qwen2-VLMA-LMMChat-UniVi大模型对比 Video-LLaMA 2023&#xff1a;阿里达摩院的…...

cocos creator 使用 protobuf 的步骤与注意事项

移除可能曾安装过的protobuf // 移除全局 npm remove -g protobufjs npm remove -g protobufjs-cli npm remove -g pbjs // 移除项目中的 npm remove --save protobufjs npm remove --save protobufjs-cli npm remove --save pbjs全局安装 npm i -g protobufjs //或者 cnpm …...

mac访达查找文件目录

mac访达查找文件目录 在Mac上使用访达&#xff08;Finder&#xff09;查找文件或目录的方法如下&#xff1a; 打开访达。 在访达窗口的侧边栏中&#xff0c;选择“ Go to Folder”&#xff08;转到文件夹&#xff09;选项&#xff0c;或者使用快捷键ShiftCommandG打开一个对…...

【数据结构】点分治 点分树

求树上长度小于等于k的路径 #include <iostream> #include <cstring> #include <algorithm>using namespace std;const int N 10010, M N * 2;int n, m; int h[N], e[M], w[M], ne[M], idx; //邻接表 bool st[N]; //记录每个点是否被删掉 int p[N]; //存储…...

K8s Calico替换为Cilium,以及安装Cilium过程(鲁莽版)

迁移CNI插件的3种办法&#xff1a; 1、创建一个新的集群&#xff0c;通过Gitops的方式迁移负载&#xff0c;然而&#xff0c;这可能涉及大量的准备工作和潜在的中断。 2、另一种方法是重新配置/etc/cni/net.d/指向Cilium。但是&#xff0c;现有的pod仍将由旧的…...

背景图鼠标放上去切换图片过渡效果

文章目录 css鼠标放上去之前效果鼠标放上去时效果 css <li class"message"></li>.message {width: 22px;height: 22px;background-image: url(/assets/message-01.png);background-size: cover;background-position: center;transition: background-ima…...

【Linux】当前进展

驱动层日志添加了下文件目录&#xff0c;函数&#xff0c;代码行的打印&#xff08;这里要小心&#xff0c;驱动目录源代码打印日志里边添进程号可能有问题&#xff0c;因为在驱动初始化的时候&#xff0c;内核还没有创建进程&#xff0c;不过猜测可以先不打印进程相关信息&…...

阿里云云效多个ssh密钥对配置

实现功能 windows本地多个ssh密钥对,分别对应不同的阿里云账号的云效 实现办法 1.生成ssh密钥对 ssh-keygen -t rsa -f C:\xxx\id_rsa_customname(我这里C:\Users\admin\.ssh\id_rsa_customname) 2.配置.ssh目录的config文件 # ruiyi Host customnameHostName codeup.al…...

前后端跨域问题及其在ThinkPHP中的解决方案

在现代Web开发中&#xff0c;前后端分离的架构越来越普遍&#xff0c;但这也带来了跨域问题。跨域指的是在一个域下的网页试图请求另一个域的资源&#xff0c;浏览器出于安全考虑会限制这种行为。本文将探讨如何在ThinkPHP中解决跨域问题。 #### 1. 什么是跨域&#xff1f; 跨…...

基于CentOS7上安装MicroK8s(最小生产的 Kubernetes)

简介 MicroK8s是一个轻量级的Kubernetes发行版,其内存和存储要求远低于全尺寸Kubernetes集群。它可以在几分钟内通过一条命令快速创建功能齐全的Kubernetes集群,极大地简化了部署过程。 兼容性:MicroK8s与Kubernetes全面兼容,确保用户可以无缝迁移和扩展他们的应用程序。 …...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...