禁止吸烟监测系统 基于图像处理的吸烟检测系统 YOLOv7
吸烟是引发火灾的重要原因之一。烟头在未熄灭的情况下,其表面温度可达200℃-300℃,中心温度甚至能高达700℃-800℃。在易燃、易爆的生产环境中,如化工厂、加油站、仓库等,一个小小的烟头就可能引发灾难性的火灾,造成巨大的财产损失和人员伤亡。
在一些特定的工业场所,存在着易燃易爆的气体、粉尘等物质。吸烟产生的火星或明火有可能与这些物质接触,从而引发爆炸。例如,在煤矿井下,瓦斯气体浓度达到一定程度时,吸烟的火花足以引发剧烈爆炸,严重威胁矿工的生命安全。
AI边缘计算吸烟监测算法
(一)图像特征提取
AI边缘计算吸烟监测算法首先通过摄像头采集图像信息,然后利用先进的图像处理技术对图像进行特征提取。这些特征包括但不限于香烟的形状、颜色、烟雾的形态等。例如,通过对香烟独特的细长形状和特定的颜色分布进行识别,算法可以初步判断图像中是否可能存在香烟物体。
(二)深度学习模型训练
为了提高检测的准确性和可靠性,算法采用深度学习模型进行训练。利用大量的标注图像数据,包括吸烟场景和非吸烟场景的图像,让模型学习不同场景下的特征模式。经过反复训练和优化,模型能够逐渐准确地识别出吸烟行为的特征,从而实现对吸烟行为的精准检测。
(三)实时监测与分析
在实际应用中,AI边缘计算技术使得监测算法能够在边缘设备上实时运行。边缘设备靠近数据源(摄像头),可以快速处理图像数据,减少数据传输延迟。算法对实时采集的图像进行分析,一旦检测到符合吸烟特征的图像模式,立即发出警报信号,实现对吸烟行为的及时发现和制止。
(四)算法优化与自适应
随着时间的推移和环境的变化,吸烟行为的表现形式可能会有所不同。为了确保监测系统的长期有效性,算法具备自我优化和自适应的能力。通过不断学习新的图像数据和场景变化,调整模型参数,提高对各种复杂环境下吸烟行为的检测准确率,适应不同的安全生产场景需求。

以下是使用 YOLOv7 进行智能识别吸烟的示例代码:
import torch
import cv2
import numpy as np# 加载 YOLOv7 模型
model = torch.hub.load('WongKinYiu/yolov7', 'custom', path='your_trained_yolov7_model.pt')# 定义类别名称,假设 0 代表吸烟相关类别
class_names = ['non-smoking', 'smoking']# 打开摄像头或视频文件
cap = cv2.VideoCapture(0) # 0 表示默认摄像头,可改为视频文件路径while True:ret, frame = cap.read()if not ret:break# 进行目标检测results = model(frame)# 解析检测结果detections = results.pandas().xyxy[0]for index, row in detections.iterrows():x_min, y_min, x_max, y_max = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax'])conf = row['confidence']class_id = int(row['class'])class_name = class_names[class_id]# 如果检测到吸烟行为,绘制边界框和标签if class_name == 'smoking':cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)cv2.putText(frame, f'{class_name}: {conf:.2f}', (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 显示结果cv2.imshow('Smoking Detection', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()
ai盒子搭配摄像头实现吸烟监测的原理
(一)摄像头采集图像数据
摄像头作为整个监测系统的“眼睛”,负责实时采集监控区域的图像信息。其安装位置和角度经过精心设计,以确保能够覆盖关键的监测区域,如生产车间、办公区域、公共场所等。摄像头将采集到的图像以数字信号的形式传输给ai盒子。
(二)ai盒子的数据处理与分析
数据接收与预处理
ai盒子接收到摄像头传来的图像数据后,首先进行预处理。这包括图像的去噪、增强等操作,以提高图像的质量和清晰度,为后续的分析处理提供更好的基础。例如,通过去除图像中的噪声干扰,可以使香烟和烟雾等特征更加突出,便于算法进行识别。
基于AI算法的吸烟行为分析
在预处理后的图像基础上,ai盒子运行内置的吸烟监测算法。如前文所述,算法通过对图像特征的提取和分析,判断是否存在吸烟行为。具体来说,它会对图像中的物体形状、颜色、运动状态等进行综合分析。如果检测到类似于香烟的物体以及伴随的烟雾特征,并且这些特征符合一定的模式和规律,就会认定为吸烟行为。
结果判断与警报生成
当算法分析得出存在吸烟行为的结论后,ai盒子会立即生成相应的警报信号。警报可以通过多种方式发出,如声音警报、灯光闪烁、向相关管理人员发送短信或邮件通知等。同时,ai盒子还可以将检测到的吸烟事件相关的图像和数据进行存储,以便后续的查询和分析,为安全管理提供有力的证据支持。
相关文章:
禁止吸烟监测系统 基于图像处理的吸烟检测系统 YOLOv7
吸烟是引发火灾的重要原因之一。烟头在未熄灭的情况下,其表面温度可达200℃-300℃,中心温度甚至能高达700℃-800℃。在易燃、易爆的生产环境中,如化工厂、加油站、仓库等,一个小小的烟头就可能引发灾难性的火灾,造成巨…...
《中国工程科学》
《中国工程科学》为工程科技战略咨询学术期刊,主要发布我国工程科技战略咨询研究成果,以及工程科技各领域前瞻性综合研究成果,为政府科学决策提供参谋、为行业科学发展提供指导、为相关学术研究提供参考。 一、2024年度征稿主题 本刊以专题…...
碳钢液动紧急切断阀QDY421F-16C DN200
在深入探讨碳钢液动紧急切断阀QDY421F-16C DN200的卓越性能与应用场景时,不得不提及其在化工、石油、天然气等高危行业中的核心地位。这款阀门以其高度的自动化控制能力和快速响应机制,成为了保障生产安全、防止介质泄漏的关键防线。 其内置的液动执行机…...
【C++】红黑树的封装——同时实现map和set
目录 红黑树的完善默认成员函数迭代器的增加 红黑树的封装红黑树模板参数的控制仿函数解决取K问题对Key的非法操作 insert的调整map的[]运算符重载 在list模拟实现一文中,介绍了如何使用同一份代码封装出list的普通迭代器和const迭代器。今天学习STL中两个关联式容器…...
Tableau|一入门
一 什么是BI工具 BI 工具即商业智能(Business Intelligence)工具,是一种用于收集、整理、分析和展示企业数据的软件系统,其主要目的是帮助企业用户更好地理解和利用数据,以支持决策制定。 主要功能: 1.数据…...
Android 12系统源码_输入系统(三)输入事件的加工和分发
前言 上一篇文章我们具体分析了InputManagerService的构造方法和start方法,知道IMS的start方法经过层层调用,最终会触发Navite层InputDispatcher的start方法和InputReader的start方法。InputDispatcher的start方法会启动一个名为InputDispatcher的线程&…...
【Elasticsearch系列廿二】特殊参数
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
Java笔试面试题AI答之设计模式(2)
文章目录 6. 什么是单例模式,以及他解决的问题,应用的环境 ?解决的问题应用的环境实现方式 7. 什么是工厂模式,以及他解决的问题,应用的环境 ?工厂模式简述工厂模式解决的问题工厂模式的应用环境工厂模式的…...
54 循环神经网络RNN_by《李沐:动手学深度学习v2》pytorch版
系列文章目录 文章目录 系列文章目录循环神经网络使用循环神经网络的语言模型困惑度(perplexity)梯度剪裁 循环神经网络 使用循环神经网络的语言模型 输入“你”,更新隐变量,输出“好”。 困惑度(perplexityÿ…...
数据仓库-数据质量规范
一、 数据质量系统概述 1.1 数据质量管理系统1.2 数据质量建设流程1.3 数据质量标准二、 数据质量管理规则 2.1 数据校验规则列表 2.1.1 数据量2.1.2 数据量对比2.1.3 空值检查2.1.4 值域检查2.1.5 规范检查2.1.6 逻辑检查2.1.7 重复数据检查2.1.8 及时性检查...
PostgreSQL 17 发布了!非常稳定的版本
📢📢📢📣📣📣 作者:IT邦德 中国DBA联盟(ACDU)成员,10余年DBA工作经验, Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主,全网粉丝10万 擅长主流Oracle、My…...
【Python】执行脚本的时,如何指定运行根目录,而不是指定脚本的父级目录
author: jwensh & gpt date: 2024.09.23 python 执行脚本的时,如何指定运行根目录,而不是指定脚本的父级目录 prompt:python 执行脚本的时候,如何指定他的运行根目录,而不是指定脚本的父级目录 在执行 Python 脚…...
JVM(HotSpot):程序计数器(Program Counter Register)
文章目录 一、内存结构图二、案例解读三、工作流程四、特点 一、内存结构图 二、案例解读 我们使用javap对字节码进行反编译,来看下程序计数器怎么体现的。 IDEA写一个简单的Java代码 反编译命令 javap -verbose InitTest.class $ javap -verbose InitTest.clas…...
等保托管怎么样,流程是什么样的?
随着信息技术的快速发展,网络安全问题愈发凸显。为了保护信息系统的安全,国家推出了网络安全等级保护制度(简称“等保”),企业在面对这一制度的同时,也逐渐意识到等保托管的重要性。等保托管旨在通过专业的…...
【HTML】img标签和超链接标签
文章目录 img 标签src 属性alt 属性title 属性width/height 属性border 属性 超链接标签:a表格标签合并单元格 img 标签 img 是一个单标签 src 属性 img 标签必须搭配 src 使用(指定图片的路径) 相对路径: ./xxx.png./img/xxx.…...
智能PPT行业赋能用户画像
智能PPT市场在巨大的需求前景下,已吸引一批不同类型的玩家投入参与竞争。从参与玩家类型来看,不乏各类与PPT创作有关的上下游企业逐步向智能PPT赛道转型进入,也包括顺应生成式AI技术热潮所推出的创业企业玩家。当前,智能PPT赛道发…...
学习C++的第七天!
1.虚函数是在基类中用 virtual 关键字声明的函数,可以在派生类中被重写。纯虚函数是在虚函数的基础上,在基类中被初始化为 0 的函数,含有纯虚函数的类是抽象类,不能被实例化。 2.如果基类的析构函数不是虚函数,当通过…...
Java编程必备:五大高效工具与框架
作为一位Java程序员,在编写Java代码时,通常会使用多种工具和框架来提高开发效率、保证代码质量并简化开发流程。以下是五个常用的Java程序员工具和框架及其简要说明: 1. IntelliJ IDEA 主要功能:IntelliJ IDEA是一个强大的Java集…...
现代桌面UI框架科普及WPF入门1
现代桌面UI框架科普及WPF入门 文章目录 现代桌面UI框架科普及WPF入门桌面应用程序框架介绍过时的UI框架MFC (Microsoft Foundation Class)缺点 经典的UI框架**WinForms****QT****WPF** 未来的UI框架**MAUI****AvaloniaUI** WPF相对于Winform,QT,MFC的独立…...
in和like性能对比
场景: 有个问题表,有个渠道表,问题和渠道的关系是一对多 需要根据渠道查询问题,暂时两种思路 1:问题表荣誉渠道id,多个id拼接 2:设计问题和渠道关联关系表 首先,这两种是常用的设计思路,那么查询谁的速度快 问题表:造10w数据,渠道表造100条数据 结论 实测10次后,发现like耗…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
