当前位置: 首页 > news >正文

禁止吸烟监测系统 基于图像处理的吸烟检测系统 YOLOv7

吸烟是引发火灾的重要原因之一。烟头在未熄灭的情况下,其表面温度可达200℃-300℃,中心温度甚至能高达700℃-800℃。在易燃、易爆的生产环境中,如化工厂、加油站、仓库等,一个小小的烟头就可能引发灾难性的火灾,造成巨大的财产损失和人员伤亡。

在一些特定的工业场所,存在着易燃易爆的气体、粉尘等物质。吸烟产生的火星或明火有可能与这些物质接触,从而引发爆炸。例如,在煤矿井下,瓦斯气体浓度达到一定程度时,吸烟的火花足以引发剧烈爆炸,严重威胁矿工的生命安全。

AI边缘计算吸烟监测算法

(一)图像特征提取

AI边缘计算吸烟监测算法首先通过摄像头采集图像信息,然后利用先进的图像处理技术对图像进行特征提取。这些特征包括但不限于香烟的形状、颜色、烟雾的形态等。例如,通过对香烟独特的细长形状和特定的颜色分布进行识别,算法可以初步判断图像中是否可能存在香烟物体。

(二)深度学习模型训练

为了提高检测的准确性和可靠性,算法采用深度学习模型进行训练。利用大量的标注图像数据,包括吸烟场景和非吸烟场景的图像,让模型学习不同场景下的特征模式。经过反复训练和优化,模型能够逐渐准确地识别出吸烟行为的特征,从而实现对吸烟行为的精准检测。

(三)实时监测与分析

在实际应用中,AI边缘计算技术使得监测算法能够在边缘设备上实时运行。边缘设备靠近数据源(摄像头),可以快速处理图像数据,减少数据传输延迟。算法对实时采集的图像进行分析,一旦检测到符合吸烟特征的图像模式,立即发出警报信号,实现对吸烟行为的及时发现和制止。

(四)算法优化与自适应

随着时间的推移和环境的变化,吸烟行为的表现形式可能会有所不同。为了确保监测系统的长期有效性,算法具备自我优化和自适应的能力。通过不断学习新的图像数据和场景变化,调整模型参数,提高对各种复杂环境下吸烟行为的检测准确率,适应不同的安全生产场景需求。

以下是使用 YOLOv7 进行智能识别吸烟的示例代码:

import torch
import cv2
import numpy as np# 加载 YOLOv7 模型
model = torch.hub.load('WongKinYiu/yolov7', 'custom', path='your_trained_yolov7_model.pt')# 定义类别名称,假设 0 代表吸烟相关类别
class_names = ['non-smoking', 'smoking']# 打开摄像头或视频文件
cap = cv2.VideoCapture(0)  # 0 表示默认摄像头,可改为视频文件路径while True:ret, frame = cap.read()if not ret:break# 进行目标检测results = model(frame)# 解析检测结果detections = results.pandas().xyxy[0]for index, row in detections.iterrows():x_min, y_min, x_max, y_max = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax'])conf = row['confidence']class_id = int(row['class'])class_name = class_names[class_id]# 如果检测到吸烟行为,绘制边界框和标签if class_name == 'smoking':cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)cv2.putText(frame, f'{class_name}: {conf:.2f}', (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 显示结果cv2.imshow('Smoking Detection', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()

ai盒子搭配摄像头实现吸烟监测的原理

(一)摄像头采集图像数据

摄像头作为整个监测系统的“眼睛”,负责实时采集监控区域的图像信息。其安装位置和角度经过精心设计,以确保能够覆盖关键的监测区域,如生产车间、办公区域、公共场所等。摄像头将采集到的图像以数字信号的形式传输给ai盒子。

(二)ai盒子的数据处理与分析

数据接收与预处理

ai盒子接收到摄像头传来的图像数据后,首先进行预处理。这包括图像的去噪、增强等操作,以提高图像的质量和清晰度,为后续的分析处理提供更好的基础。例如,通过去除图像中的噪声干扰,可以使香烟和烟雾等特征更加突出,便于算法进行识别。

基于AI算法的吸烟行为分析

在预处理后的图像基础上,ai盒子运行内置的吸烟监测算法。如前文所述,算法通过对图像特征的提取和分析,判断是否存在吸烟行为。具体来说,它会对图像中的物体形状、颜色、运动状态等进行综合分析。如果检测到类似于香烟的物体以及伴随的烟雾特征,并且这些特征符合一定的模式和规律,就会认定为吸烟行为。

结果判断与警报生成

当算法分析得出存在吸烟行为的结论后,ai盒子会立即生成相应的警报信号。警报可以通过多种方式发出,如声音警报、灯光闪烁、向相关管理人员发送短信或邮件通知等。同时,ai盒子还可以将检测到的吸烟事件相关的图像和数据进行存储,以便后续的查询和分析,为安全管理提供有力的证据支持。

相关文章:

禁止吸烟监测系统 基于图像处理的吸烟检测系统 YOLOv7

吸烟是引发火灾的重要原因之一。烟头在未熄灭的情况下,其表面温度可达200℃-300℃,中心温度甚至能高达700℃-800℃。在易燃、易爆的生产环境中,如化工厂、加油站、仓库等,一个小小的烟头就可能引发灾难性的火灾,造成巨…...

《中国工程科学》

《中国工程科学》为工程科技战略咨询学术期刊,主要发布我国工程科技战略咨询研究成果,以及工程科技各领域前瞻性综合研究成果,为政府科学决策提供参谋、为行业科学发展提供指导、为相关学术研究提供参考。 一、2024年度征稿主题 本刊以专题…...

碳钢液动紧急切断阀QDY421F-16C DN200

在深入探讨碳钢液动紧急切断阀QDY421F-16C DN200的卓越性能与应用场景时,不得不提及其在化工、石油、天然气等高危行业中的核心地位。这款阀门以其高度的自动化控制能力和快速响应机制,成为了保障生产安全、防止介质泄漏的关键防线。 其内置的液动执行机…...

【C++】红黑树的封装——同时实现map和set

目录 红黑树的完善默认成员函数迭代器的增加 红黑树的封装红黑树模板参数的控制仿函数解决取K问题对Key的非法操作 insert的调整map的[]运算符重载 在list模拟实现一文中,介绍了如何使用同一份代码封装出list的普通迭代器和const迭代器。今天学习STL中两个关联式容器…...

Tableau|一入门

一 什么是BI工具 BI 工具即商业智能(Business Intelligence)工具,是一种用于收集、整理、分析和展示企业数据的软件系统,其主要目的是帮助企业用户更好地理解和利用数据,以支持决策制定。 主要功能: 1.数据…...

Android 12系统源码_输入系统(三)输入事件的加工和分发

前言 上一篇文章我们具体分析了InputManagerService的构造方法和start方法,知道IMS的start方法经过层层调用,最终会触发Navite层InputDispatcher的start方法和InputReader的start方法。InputDispatcher的start方法会启动一个名为InputDispatcher的线程&…...

【Elasticsearch系列廿二】特殊参数

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

Java笔试面试题AI答之设计模式(2)

文章目录 6. 什么是单例模式,以及他解决的问题,应用的环境 ?解决的问题应用的环境实现方式 7. 什么是工厂模式,以及他解决的问题,应用的环境 ?工厂模式简述工厂模式解决的问题工厂模式的应用环境工厂模式的…...

54 循环神经网络RNN_by《李沐:动手学深度学习v2》pytorch版

系列文章目录 文章目录 系列文章目录循环神经网络使用循环神经网络的语言模型困惑度(perplexity)梯度剪裁 循环神经网络 使用循环神经网络的语言模型 输入“你”,更新隐变量,输出“好”。 困惑度(perplexity&#xff…...

数据仓库-数据质量规范

一、 数据质量系统概述 1.1 数据质量管理系统1.2 数据质量建设流程1.3 数据质量标准二、 数据质量管理规则 2.1 数据校验规则列表 2.1.1 数据量2.1.2 数据量对比2.1.3 空值检查2.1.4 值域检查2.1.5 规范检查2.1.6 逻辑检查2.1.7 重复数据检查2.1.8 及时性检查...

PostgreSQL 17 发布了!非常稳定的版本

📢📢📢📣📣📣 作者:IT邦德 中国DBA联盟(ACDU)成员,10余年DBA工作经验, Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主,全网粉丝10万 擅长主流Oracle、My…...

【Python】执行脚本的时,如何指定运行根目录,而不是指定脚本的父级目录

author: jwensh & gpt date: 2024.09.23 python 执行脚本的时,如何指定运行根目录,而不是指定脚本的父级目录 prompt:python 执行脚本的时候,如何指定他的运行根目录,而不是指定脚本的父级目录 在执行 Python 脚…...

JVM(HotSpot):程序计数器(Program Counter Register)

文章目录 一、内存结构图二、案例解读三、工作流程四、特点 一、内存结构图 二、案例解读 我们使用javap对字节码进行反编译,来看下程序计数器怎么体现的。 IDEA写一个简单的Java代码 反编译命令 javap -verbose InitTest.class $ javap -verbose InitTest.clas…...

等保托管怎么样,流程是什么样的?

随着信息技术的快速发展,网络安全问题愈发凸显。为了保护信息系统的安全,国家推出了网络安全等级保护制度(简称“等保”),企业在面对这一制度的同时,也逐渐意识到等保托管的重要性。等保托管旨在通过专业的…...

【HTML】img标签和超链接标签

文章目录 img 标签src 属性alt 属性title 属性width/height 属性border 属性 超链接标签:a表格标签合并单元格 img 标签 img 是一个单标签 src 属性 img 标签必须搭配 src 使用(指定图片的路径) 相对路径: ./xxx.png./img/xxx.…...

智能PPT行业赋能用户画像

智能PPT市场在巨大的需求前景下,已吸引一批不同类型的玩家投入参与竞争。从参与玩家类型来看,不乏各类与PPT创作有关的上下游企业逐步向智能PPT赛道转型进入,也包括顺应生成式AI技术热潮所推出的创业企业玩家。当前,智能PPT赛道发…...

学习C++的第七天!

1.虚函数是在基类中用 virtual 关键字声明的函数,可以在派生类中被重写。纯虚函数是在虚函数的基础上,在基类中被初始化为 0 的函数,含有纯虚函数的类是抽象类,不能被实例化。 2.如果基类的析构函数不是虚函数,当通过…...

Java编程必备:五大高效工具与框架

作为一位Java程序员,在编写Java代码时,通常会使用多种工具和框架来提高开发效率、保证代码质量并简化开发流程。以下是五个常用的Java程序员工具和框架及其简要说明: 1. IntelliJ IDEA 主要功能:IntelliJ IDEA是一个强大的Java集…...

现代桌面UI框架科普及WPF入门1

现代桌面UI框架科普及WPF入门 文章目录 现代桌面UI框架科普及WPF入门桌面应用程序框架介绍过时的UI框架MFC (Microsoft Foundation Class)缺点 经典的UI框架**WinForms****QT****WPF** 未来的UI框架**MAUI****AvaloniaUI** WPF相对于Winform,QT,MFC的独立…...

in和like性能对比

场景: 有个问题表,有个渠道表,问题和渠道的关系是一对多 需要根据渠道查询问题,暂时两种思路 1:问题表荣誉渠道id,多个id拼接 2:设计问题和渠道关联关系表 首先,这两种是常用的设计思路,那么查询谁的速度快 问题表:造10w数据,渠道表造100条数据 结论 实测10次后,发现like耗…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...