LLM阅读推荐
(按名称排序)
- 【徹底解説】これからのエンジニアの必携スキル、プロンプトエンジニアリングの手引「Prompt Engineering Guide」を読んでまとめてみた(opens in a new tab)
- 3 Principles for prompt engineering with GPT-3(opens in a new tab)
- A beginner-friendly guide to generative language models - LaMBDA guide(opens in a new tab)
- A Complete Introduction to Prompt Engineering for Large Language Models(opens in a new tab)
- A Generic Framework for ChatGPT Prompt Engineering(opens in a new tab)
- An SEO’s guide to ChatGPT prompts(opens in a new tab)
- AI Content Generation(opens in a new tab)
- AI's rise generates new job title: Prompt engineer(opens in a new tab)
- AI Safety, RLHF, and Self-Supervision - Jared Kaplan | Stanford MLSys #79(opens in a new tab)
- Awesome Textual Instruction Learning Papers(opens in a new tab)
- Awesome ChatGPT Prompts(opens in a new tab)
- Best 100+ Stable Diffusion Prompts(opens in a new tab)
- Best practices for prompt engineering with OpenAI API(opens in a new tab)
- Building GPT-3 applications — beyond the prompt(opens in a new tab)
- Can AI really be protected from text-based attacks?(opens in a new tab)
- ChatGPT, AI and GPT-3 Apps and use cases(opens in a new tab)
- ChatGPT Prompts(opens in a new tab)
- CMU Advanced NLP 2022: Prompting(opens in a new tab)
- Common Sense as Dark Matter - Yejin Choi | Stanford MLSys #78(opens in a new tab)
- Create images with your words – Bing Image Creator comes to the new Bing(opens in a new tab)
- Curtis64's set of prompt gists(opens in a new tab)
- DALL·E 2 Prompt Engineering Guide(opens in a new tab)
- DALL·E 2 Preview - Risks and Limitations(opens in a new tab)
- DALLE Prompt Book(opens in a new tab)
- DALL-E, Make Me Another Picasso, Please(opens in a new tab)
- Diffusion Models: A Practical Guide(opens in a new tab)
- Exploiting GPT-3 Prompts(opens in a new tab)
- Exploring Prompt Injection Attacks(opens in a new tab)
- Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious(opens in a new tab)
- FVQA 2.0: Introducing Adversarial Samples into Fact-based Visual Question Answering(opens in a new tab)
- Generative AI with Cohere: Part 1 - Model Prompting(opens in a new tab)
- Generative AI: Perspectives from Stanford HAI(opens in a new tab)
- Get a Load of This New Job: "Prompt Engineers" Who Act as Psychologists to AI Chatbots(opens in a new tab)
- Giving GPT-3 a Turing Test(opens in a new tab)
- GPT-3 & Beyond(opens in a new tab)
- GPT3 and Prompts: A quick primer(opens in a new tab)
- Hands-on with Bing’s new ChatGPT-like features(opens in a new tab)
- How to Draw Anything(opens in a new tab)
- How to get images that don't suck(opens in a new tab)
- How to make LLMs say true things(opens in a new tab)
- How to perfect your prompt writing for AI generators(opens in a new tab)
- How to write good prompts(opens in a new tab)
- If I Was Starting Prompt Engineering in 2023: My 8 Insider Tips(opens in a new tab)
- Indirect Prompt Injection on Bing Chat(opens in a new tab)
- Interactive guide to GPT-3 prompt parameters(opens in a new tab)
- Introduction to Reinforcement Learning with Human Feedback(opens in a new tab)
- In defense of prompt engineering(opens in a new tab)
- JailBreaking ChatGPT: Everything You Need to Know(opens in a new tab)
- Language Models and Prompt Engineering: Systematic Survey of Prompting Methods in NLP(opens in a new tab)
- Language Model Behavior: A Comprehensive Survey(opens in a new tab)
- Learn Prompting(opens in a new tab)
- Meet Claude: Anthropic’s Rival to ChatGPT(opens in a new tab)
- Methods of prompt programming(opens in a new tab)
- Mysteries of mode collapse(opens in a new tab)
- NLP for Text-to-Image Generators: Prompt Analysis(opens in a new tab)
- NLP with Deep Learning CS224N/Ling284 - Lecture 11: Promting, Instruction Tuning, and RLHF(opens in a new tab)
- Notes for Prompt Engineering by sw-yx(opens in a new tab)
- OpenAI Cookbook(opens in a new tab)
- OpenAI Prompt Examples for several applications(opens in a new tab)
- Pretrain, Prompt, Predict - A New Paradigm for NLP(opens in a new tab)
- Prompt Engineer: Tech's hottest job title?(opens in a new tab)
- Prompt Engineering by Lilian Weng(opens in a new tab)
- Prompt Engineering 101 - Introduction and resources(opens in a new tab)
- Prompt Engineering 101: Autocomplete, Zero-shot, One-shot, and Few-shot prompting(opens in a new tab)
- Prompt Engineering 101(opens in a new tab)
- Prompt Engineering - A new profession ?(opens in a new tab)
- Prompt Engineering by co:here(opens in a new tab)
- Prompt Engineering by Microsoft(opens in a new tab)
- Prompt Engineering: The Career of Future(opens in a new tab)
- Prompt engineering davinci-003 on our own docs for automated support (Part I)(opens in a new tab)
- Prompt Engineering Guide: How to Engineer the Perfect Prompts(opens in a new tab)
- Prompt Engineering in GPT-3(opens in a new tab)
- Prompt Engineering Template(opens in a new tab)
- Prompt Engineering Topic by GitHub(opens in a new tab)
- Prompt Engineering: The Ultimate Guide 2023 [GPT-3 & ChatGPT](opens in a new tab)
- Prompt Engineering: From Words to Art(opens in a new tab)
- Prompt Engineering with OpenAI's GPT-3 and other LLMs(opens in a new tab)
- Prompt injection attacks against GPT-3(opens in a new tab)
- Prompt injection to read out the secret OpenAI API key(opens in a new tab)
- Prompting: Better Ways of Using Language Models for NLP Tasks(opens in a new tab)
- Prompting for Few-shot Learning(opens in a new tab)
- Prompting in NLP: Prompt-based zero-shot learning(opens in a new tab)
- Prompting Methods with Language Models and Their Applications to Weak Supervision(opens in a new tab)
- Prompts as Programming by Gwern(opens in a new tab)
- Prompts for communicators using the new AI-powered Bing(opens in a new tab)
- Reverse Prompt Engineering for Fun and (no) Profit(opens in a new tab)
- Retrieving Multimodal Information for Augmented Generation: A Survey(opens in a new tab)
- So you want to be a prompt engineer: Critical careers of the future(opens in a new tab)
- Simulators(opens in a new tab)
- Start with an Instruction(opens in a new tab)
- Talking to machines: prompt engineering & injection(opens in a new tab)
- Tech’s hottest new job: AI whisperer. No coding required(opens in a new tab)
- The Book - Fed Honeypot(opens in a new tab)
- The ChatGPT Prompt Book(opens in a new tab)
- The ChatGPT list of lists: A collection of 3000+ prompts, examples, use-cases, tools, APIs, extensions, fails and other resources(opens in a new tab)
- The Most Important Job Skill of This Century(opens in a new tab)
- The Mirror of Language(opens in a new tab)
- The Waluigi Effect (mega-post)(opens in a new tab)
- Thoughts and impressions of AI-assisted search from Bing(opens in a new tab)
- Unleash Your Creativity with Generative AI: Learn How to Build Innovative Products!(opens in a new tab)
- Unlocking Creativity with Prompt Engineering(opens in a new tab)
- Using GPT-Eliezer against ChatGPT Jailbreaking(opens in a new tab)
- What Is ChatGPT Doing … and Why Does It Work?
相关文章:
LLM阅读推荐
(按名称排序) 【徹底解説】これからのエンジニアの必携スキル、プロンプトエンジニアリングの手引「Prompt Engineering Guide」を読んでまとめてみた(opens in a new tab)3 Principles for prompt engineering with GPT-3(opens in a new tab)A beginn…...
计算机网络笔记001
讲义 1.计算机网络的定义 定义: 一批独立自治的计算机系统的互连集合体 说明: 独立自治的计算机系统, 互连的手段是各种各样的, 依据协议进行 工作 2.计算机网络和通信网络 通信网络: 重点研究通…...

如何用IDEA连接HBase
编写java代码,远程连接HBase进行相关的操作 一、先导依赖 代码如下: 二、连接成功...
【JS代码规范】如何优化if-else代码规范
1. 快速结束,减少没必要的else 案例一:2种互斥的条件判断 function test(data) {let result ;if (data < 0) {result 负数;} else {result 非负数;}return result; }优化一: function test(data) {if (data < 0) {return 负数;} …...

MovieLife 电影生活
MovieLife 电影生活 今天看到一个很有意思的项目:https://www.lampysecurity.com/post/the-infinite-audio-book “我有一个看似愚蠢的想法。通常,这类想法只是一闪而过,很少会付诸实践。但这次有所不同。假如你的生活是一部电影,…...
网工内推 | 中级云运维工程师,双休,五险一金
01 博达人才 🔷招聘岗位:中级云运维工程师 🔷岗位职责 1、受理数据中心、云租户投诉、受理故障工单,并在时限内完成。 2、协助客户开通云产品,解答客户使用过程中的疑问。 3、处理云产品故障,协助进行故…...

Thingsboard规则链:Related Entity Data节点详解
引言 在复杂的物联网(IoT)生态系统中,数据的集成与分析是实现高效管理和智能决策的基础。Thingsboard作为一个强大的开源物联网平台,其规则链(Rule Chains)机制允许用户构建自定义的数据处理流程。其中&am…...

C++结尾
面试题 1.什么是虚函数?什么是纯虚函数 在定义函数时前面加virtual。虚函数是为了,父子类中只有一个该函数。如果在子类重写虚函数,那么用的就是子类重写的虚函数;如果子类没有重写虚函数,那么调用的是父类继承的虚函…...

Flutter鸿蒙化环境配置(windows)
Flutter鸿蒙化环境配置(windows) 参考资料Window配置Flutter的鸿蒙化环境下载配置环境变量HarmonyOS的环境变量配置配置Flutter的环境变量Flutter doctor -v 检测的问题flutter_flutter仓库地址的警告问题Fliutter doctor –v 报错[!] Android Studio (v…...
Vue入门之生命周期
文章目录 一、Vue 生命周期概述二、生命周期的四个阶段1. 创建阶段2. 挂载阶段3. 更新阶段4. 销毁阶段 三、代码案例四、总结 在 Vue 开发中,理解生命周期是非常重要的。Vue 的生命周期可以帮助我们在不同的阶段执行特定的逻辑,从而更好地控制组件的行为…...

UNI-SOP应用场景(1)- 纯前端预开发
在平时新项目开发中,前端小伙伴是否有这样的经历,hi,后端小伙伴们,系统啥时候能登录,啥时候能联调了,这是时候往往得到的回答就是,再等等,我们正在搭建系统呢,似曾相识的…...
力扣9.23
1014. 最佳观光组合 给你一个正整数数组 values,其中 values[i] 表示第 i 个观光景点的评分,并且两个景点 i 和 j 之间的 距离 为 j - i。 一对景点(i < j)组成的观光组合的得分为 values[i] values[j] i - j ,…...
[Redis][事务]详细讲解
目录 0.什么是事务?1.Redis 事务本质2.Redis 事务意义3.事务操作1.MULTI2.EXEC3.DISCARD4.WATCH5.UNWATCH 0.什么是事务? Redis的事务和MySQL的事务概念上是类似的,都是把一系列操作绑定成一组,让这一组能够批量执行Redis事务和M…...

Latex——一行的划线 如何分开
代码: \cmidrule(r){3-4} \cmidrule(r){5-6} \cmidrule(r){7-8}效果: 参考文章: LaTeX技巧653:如何隔开LaTeX表格邻近\cline表格线?...

大数据:快速入门Scala+Flink
一、什么是Scala Scala 是一种多范式编程语言,它结合了面向对象编程和函数式编程的特性。Scala 这个名字是“可扩展语言”(Scalable Language)的缩写,意味着它被设计为能够适应不同规模的项目,从小型脚本到大型分布式…...

侧边菜单的展开和折叠
环境准备:Vue3Element-UI Plus <script setup> import {ref} from "vue";// 是否折叠菜单,默认折叠 const isCollapse ref(true)</script><template><el-container><el-aside><el-menu:collapse"isCo…...
自动化办公-Python中的for循环
for 循环是 Python 中用于迭代(遍历)序列(如列表、元组、字典、集合、字符串)或其他可迭代对象的控制结构。它允许您逐一访问序列中的每个元素,并对其执行操作。以下是对 for 循环的详细介绍,包括语法、使用…...
Python_itertools
itertools itertools.count(start, step) 返回一个无限迭代器,从指定的start开始,每次增加step。 import itertools # 从1开始,每次增加1,输出前5个数 for i in itertools.count(1, 1):if i > 5:breakprint(i)运行结果&#…...

Apache Iceberg 数据类型参考表
Apache Iceberg 概述-链接 Apache Iceberg 数据类型参考表 数据类型描述实例方法注意事项BOOLEAN布尔类型,表示真或假true, false用于条件判断,例如 WHERE is_active true。确保逻辑条件的正确性。INTEGER32位有符号整数42, -7可用于计算、聚合…...
职责链模式
职责链模式 责任链(Chain of Responsibility)模式:为了避免请求发送者与多个请求处理者耦合在一起,于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链;当有请求发生时,可将请求沿着这…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...