第L2周:机器学习|线性回归模型 LinearRegression:2. 多元线性回归模型
- 本文为365天深度学习训练营 中的学习记录博客
- 原作者:K同学啊
任务:
●1. 学习本文的多元线形回归模型。
●2. 参考文本预测花瓣宽度的方法,选用其他三个变量来预测花瓣长度。
一、多元线性回归
简单线性回归:影响 Y 的因素唯一,只有一个。
多元线性回归:影响 Y 的因数不唯一,有多个。
与一元线性回归一样,多元线性回归自然是一个回归问题。

相当于我们高中学的一元一次方程,变成了 n 元一次方程。因为 y 还是那个 y。只是自变量增加了。
二、代码实现
我的环境:
●语言环境:Python3.9
●编译器:Jupyter Lab
第1步:数据预处理
- 导入数据集
import pandas as pd
import numpy as npurl = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] dataset = pd.read_csv(url, names=names)
dataset
代码输出:
| 花萼-length | 花萼-width | 花瓣-length | 花瓣-width | class | |
|---|---|---|---|---|---|
| 0 | 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa |
| 1 | 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa |
| 4 | 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa |
| ... | ... | ... | ... | ... | ... |
| 145 | 6.7 | 3.0 | 5.2 | 2.3 | Iris-virginica |
| 146 | 6.3 | 2.5 | 5.0 | 1.9 | Iris-virginica |
| 147 | 6.5 | 3.0 | 5.2 | 2.0 | Iris-virginica |
| 148 | 6.2 | 3.4 | 5.4 | 2.3 | Iris-virginica |
| 149 | 5.9 | 3.0 | 5.1 | 1.8 | Iris-virginica |
150 rows × 5 columns
备注:
如果报下面错误:URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self signed certificate in certificate chain (_ssl.c:1129)>
在代码开头加上如下代码即可:
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
- 数据分析
import matplotlib.pyplot as pltplt.plot(dataset['花萼-length'], dataset['花瓣-width'], 'x', label="marker='x'")
plt.plot(dataset['花萼-width'], dataset['花瓣-width'], 'o', label="marker='o'")
plt.plot(dataset['花瓣-length'], dataset['花瓣-width'], 'v', label="marker='v'")plt.legend(numpoints=1)
plt.show()
代码输出:

X = dataset.iloc[ : ,[1,2]].values
Y = dataset.iloc[ : , 3 ].values
- 构建训练集、测试集
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
第2步:训练多元线性回归模型
from sklearn.linear_model import LinearRegressionregressor = LinearRegression()
regressor.fit(X_train, Y_train)
第3步:在测试集上预测结果
y_pred = regressor.predict(X_test)
y_pred
代码输出:
array([1.76025586, 1.23794101, 0.29130263, 2.28334281, 0.2668048 ,2.18837013, 0.18945083, 1.61397124, 1.63158995, 1.28848086,1.95785242, 1.53661727, 1.58870131, 1.54581268, 1.59712462,0.24153487, 1.51134735, 1.44318879, 0.19022292, 0.22314407,1.67447859, 1.51977066, 0.43835934, 0.18179962, 1.63158995,0.06920823, 0.47205258, 1.42557008, 0.94614386, 0.30969343])
第4步:测试集预测结果可视化
plt.scatter(Y_test,y_pred, color='red')plt.xlabel("True")
plt.ylabel("Prediction")plt.show()
代码输出:

相关文章:
第L2周:机器学习|线性回归模型 LinearRegression:2. 多元线性回归模型
本文为365天深度学习训练营 中的学习记录博客原作者:K同学啊 任务: ●1. 学习本文的多元线形回归模型。 ●2. 参考文本预测花瓣宽度的方法,选用其他三个变量来预测花瓣长度。 一、多元线性回归 简单线性回归:影响 Y 的因素唯一&…...
JavaScript的条件语句
if条件语句 if结构先判断一个表达式的布尔值,然后根据布尔值的真伪,执行不同的语句。所谓布尔值,指的是JavaScript 的两个特殊值,true表示真,false表示伪。 if语句语法规范 if(布尔值){语句;}var m3if(m3){console.l…...
vue3 vite模式配置测试,开发、生产环境以及代理配置
1、首先在根目录下创建三个文本文件:.env.development,.env.production,.env.test .env.development中的内容为: // 开发环境 .env.development NODE_ENV development VITE_APP_MODE development VITE_OUTPUTDIR dist_dev /…...
【rabbitmq-server】安装使用介绍
在 1050a 系统下安装 rabbitmq-server 服务以及基本配置;【注】:改方案用于A版统信服务器操作系统 文章目录 功能概述功能介绍一、安装软件包二、启动服务三、验证四、基本配置功能概述 RabbitMQ 是AMQP的实现,高性能的企业消息的新标准。RabbitMQ服务器是一个强大和可扩展…...
Kafka系列之:安装部署CMAK,CMAK管理大型Kafka集群参数调优
Kafka系列之:安装部署CMAK,CMAK管理大型Kafka集群参数调优 一、CMAK二、要求三、配置四、启动服务五、使用 Security 启动服务六、消费者/生产者滞后七、从 Kafka Manager 迁移到 CMAK八、CMAK管理大型Kafka集群参数调优九、后台运行CMAK十、输出日志一、CMAK CMAK(之前称为…...
c语言200例 64
大家好,欢迎来到无限大的频道。 今天带领大家来学习c语言。 题目要求: 设计一个进行候选人的选票程序。假设有三位候选人,在屏幕上输入要选择的候选人姓名, 有10次投票机会,最后输出每个人的得票结果。好的ÿ…...
[leetcode]216_组合总和III_给定数字范围且输出无重复
找出所有相加之和为 n 的 k 个数的组合,且满足下列条件: 只使用数字1到9 每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。示例 1: 输入: k 3, n 7 输出: [[1,2,4]] 解释: 1…...
Doris 2.x 安装及使用
Doris 2.x 安装及使用 简介 Apache Doris 是一款基于 MPP 架构的高性能、实时的分析型数据库,以高效、简单、统一的特点被人们所熟知,仅需亚秒级响应时间即可返回海量数据下的查询结果,不仅可以支持高并发的点查询场景,也能支持…...
MySQL字符集设置
MySQL字符集设置 一、查看当前配置的字符集 \s;示例 MariaDB [(none)]> \s -------------- mysql Ver 15.1 Distrib 5.5.68-MariaDB, for Linux (x86_64) using readline 5.1Connection id: 11 Current database: Current user: rootlocalhost SSL: …...
深度学习模型量化
模型量化是深度学习领域中的一项重要技术,它通过降低模型参数的精度,将浮点数转换为整数或定点数,从而实现模型的压缩和优化。以下是进行模型量化的详细步骤和注意事项: 一、模型量化的基本步骤 选择量化方法 后训练量化…...
红黑树和B+树
红黑树和B树是两种常用的自平衡数据结构,适用于不同的应用场景和需求。下面是对这两种树的详细比较和描述: 红黑树 基本结构: 红黑树是一种自平衡的二叉搜索树(Binary Search Tree),其中每个节点都有一个颜…...
debian 12配置固定ip
配置文件 cat /etc/network/interfaces |grep -v # source /etc/network/interfaces.d/*auto lo iface lo inet loopbackallow-hotplug ens18 iface ens18 inet staticaddress 192.168.0.105/24network 192.168.0.0broadcast 192.168.0.255gateway 192.168.0.1dns-nameserver…...
OceanBase技术解析: 执行器中的自适应技术
在《OceanBase 数据库源码解析》这本书中,对于执行器的探讨还不够深入,它更多地聚焦于执行器的并行处理机制。因此,通过本文与大家分享OceanBase执行器中几种典型的自适应技术,作为对书中执行器部分的一个补充。 提升数据库分析性…...
Spring Cloud Gateway接入WebSocket:实现实时通信
在现代的微服务架构中,实时通信变得越来越重要。Spring Cloud Gateway作为Spring Cloud生态中的API网关,提供了动态路由、监控、弹性、安全等功能。本文将介绍如何通过Spring Cloud Gateway接入WebSocket,实现服务之间的实时通信。 为什么需…...
linux信号| 学习信号三步走 | 学习信号需要打通哪些知识脉络?
前言: 本节内容主要讲解linux下信号的预备知识以及信号的概念, 信号部分我们将会分为几个阶段进行讲解:信号的概念, 信号的产生, 信号的保存。本节主要讲解信号 ps:本节内容适合学习了进程相关概念的友友们进行观看哦 目录 什么是…...
Java调用第三方接口、http请求详解,一文学会
Java 调用第三方接口的封装方法详解 在开发企业级应用时,调用第三方接口是非常常见的场景。我们可能需要与外部服务集成,如支付接口、短信接口、天气服务接口等。为了提高代码的可维护性、复用性和易扩展性,封装第三方接口调用的方法非常重要…...
windows10使用bat脚本安装前后端环境之redis注册服务
首先需要搞清楚redis在本地是怎么安装配置、然后在根据如下步骤编写bat脚本: 思路 1.下载zip格式redis 2.查看windows server服务是否已安装redis 3.启动查看服务是否正常 bat脚本 echo off echo windows10 x64 server redis init REM 请求管理员权限并隐藏窗口 …...
fastapp-微信开发GPT项目第一课
0. 开发说明 在学习开发本项目之前,必须保证有以下知识储备和环境工具。 技术栈说明python>3.9、pydantic>2.7.1python基础,http协议fastapi>0.111.0web协程异步框架,有web开发基础,异步编程,类型标注[pyth…...
在双十一必买的好物有哪些?2024年双十一好物清单分享
一年一度的双十一购物狂欢节再次悄然临近,它不仅是一场购物的盛宴,更是我们提前规划生活、享受优惠的绝佳时机,在这个全民狂欢的日子里,各大品牌纷纷亮出杀手锏,推出年度最给力的优惠和新品,让人目不暇接&a…...
避免glibc版本而报错,CentOS等Linux安装node.js完美方法
概述 对于Node.js v18.x或更高,Node.js官方默认是在Ubuntu 20.04, Debian 10, RHEL 8,CentOS 8等高版操作系统上编译得到的,高版本操作系统的glibc版本≥2.28。所以,下载Node.js后,也需要glibc版本≥2.28才能使用。 而CentOS 7.x等…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...
VSCode 使用CMake 构建 Qt 5 窗口程序
首先,目录结构如下图: 运行效果: cmake -B build cmake --build build 运行: windeployqt.exe F:\testQt5\build\Debug\app.exe main.cpp #include "mainwindow.h"#include <QAppli...
虚幻基础:角色旋转
能帮到你的话,就给个赞吧 😘 文章目录 移动组件使用控制器所需旋转:组件 使用 控制器旋转将旋转朝向运动:组件 使用 移动方向旋转 控制器旋转和移动旋转 缺点移动旋转:必须移动才能旋转,不移动不旋转控制器…...
