语音识别(非实时)
1.环境
python :3.10.14
2.完整代码
import whisper #whisper
import wave # 使用wave库可读、写wav类型的音频文件
import pyaudio # 使用pyaudio库可以进行录音,播放,生成wav文件
def record(time): # 录音程序# 定义数据流块CHUNK = 1024 # 音频帧率(也就是每次读取的数据是多少,默认1024)FORMAT = pyaudio.paInt16 # 采样时生成wav文件正常格式CHANNELS = 1 # 音轨数(每条音轨定义了该条音轨的属性,如音轨的音色、音色库、通道数、输入/输出端口、音量等。可以多个音轨,不唯一)RATE = 16000 # 采样率(即每秒采样多少数据)RECORD_SECONDS = time # 录音时间WAVE_OUTPUT_FILENAME = "./output.wav" # 保存音频路径p = pyaudio.PyAudio() # 创建PyAudio对象stream = p.open(format=FORMAT, # 采样生成wav文件的正常格式channels=CHANNELS, # 音轨数rate=RATE, # 采样率input=True, # Ture代表这是一条输入流,False代表这不是输入流frames_per_buffer=CHUNK) # 每个缓冲多少帧print("* 开始录音") # 开始录音标志frames = [] # 定义frames为一个空列表for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): # 计算要读多少次,每秒的采样率/每次读多少数据*录音时间=需要读多少次data = stream.read(CHUNK) # 每次读chunk个数据frames.append(data) # 将读出的数据保存到列表中print("* 结束语音") # 结束录音标志stream.stop_stream() # 停止输入流stream.close() # 关闭输入流p.terminate() # 终止pyaudiowf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') # 以'wb‘二进制流写的方式打开一个文件wf.setnchannels(CHANNELS) # 设置音轨数wf.setsampwidth(p.get_sample_size(FORMAT)) # 设置采样点数据的格式,和FOMART保持一致wf.setframerate(RATE) # 设置采样率与RATE要一致wf.writeframes(b''.join(frames)) # 将声音数据写入文件wf.close() # 数据流保存完,关闭文件
if __name__ == '__main__':# model = whisper.load_model("medium")model = whisper.load_model("small")record(5) # 定义录音时间,单位/sresult = model.transcribe("./output.wav",language='chinese',fp16 = False)s = result["text"]print("语音转文字"+s)
3.问题
1.这里面用的是openAI的whisper模型,直接代码跑起来自动下载
2.有问题私信联系
相关文章:
语音识别(非实时)
1.环境 python :3.10.14 2.完整代码 import whisper #whisper import wave # 使用wave库可读、写wav类型的音频文件 import pyaudio # 使用pyaudio库可以进行录音,播放,生成wav文件 def record(time): # 录音程序# 定义数据流块CHUNK …...
【计算机网络】--URL统一资源定位符
一个网站地址实例 scheme://host.domain:port/path/filename scheme——定义因特网服务的类型,常见的类型是http host——定义域主机(http的默认主机是www) domain———定义因特网的域名,例如,jinyun.fun …...
在成都建“圈”五年,鲲鹏让智能化新风吹遍巴蜀大地
科技圈里流行着“互联网四大中心”的说法,即南边的深圳、东边的杭州、北边的北京和西边的成都。 深圳、杭州、北京几乎没有太大的争议,这里是国内著名的互联网公司聚集地,有着国内排行前三的互联网企业总部,单单一个北京西二旗就…...
Unity图形用户界面!*★,°*:.☆( ̄▽ ̄)/$:*.°★* 。(万字解析)
Unity 3D GUI 简介 游戏开发过程中,开发人员往往会通过制作大量的图形用户界面( Graphical User Interface,GUI )来增强游戏与玩家的交互性。 Unity 3D 中的图形系统分为 OnGUI、NGUI、UGUI等,这些类型的图形系统内容…...
【JAVA报错已解决】Java.lang.NullPointerException
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 专栏介绍 在软件开发和日常使用中,BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…...
JSON 教程
JSON 教程 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> …...
HBase 的基本架构 详解
HBase 是一个分布式的、面向列的数据库,构建在 HDFS(Hadoop Distributed File System)之上,提供高效的随机读写操作。为了全面理解 HBase 的基础架构,需要从逻辑架构、物理存储、组件之间的交互、数据管理和底层设计出…...
crypt.h:No such file or directory报错处理
crypt.h:No such file or directory 报错处理 前言:本文初编辑于2024年9月27日 CSDN主页:https://blog.csdn.net/rvdgdsva 博客园主页:https://www.cnblogs.com/hassle 博客园本文链接: 大!萌࿰…...
网络消费维权的9个常见法律问题
一、忘记付尾款,定金能否退还? 不能。消费者在网络提交订单后,合同即成立。合同成立后,消费者的义务为按时付款。若消费者在支付定金后未能支付尾款,即未能履行付款义务,会导致合同无法履行,构…...
detectron2是怎么建立模型的?以SparseInst代码为例
看SparseInst论文发现论文里有些地方没讲清楚;遂找SparseInst源码来看模型结构 我选择从推理代码来找模型结构: 经探索,在SparseInst代码里,推理需要执行代码 python demo.py --config-file configs/sparse_inst_r50_base.yaml …...
kafka监控平台Kafdrop:使用记录
背景 AI的发展真是太方便了,让它给我推荐一款轻量级,没有学习曲线的kafka监控平台,它就给我推荐这一款。用了一下果然没有一点学习曲线。 目前已经满足了我的需求,可视化界面,topic、消息、消费者group信息以及消费情…...
的使用和内联函数
今天我们来了解一下C中的&和内联函数 引用标识符& C觉得C语言部分的指针有些麻烦,容易混乱,所以C创造了一个标识符&,表示是谁的别名。跟指针对比一下:int* a1&b1;int &a2b2;这样看,显然a1存放的…...
征程6 上基于 DEB 工具实现包管理
1.引言 在开发、调测过程中,开发人员需要将系统软件、应用软件部署到 Soc 板端,以用于运行调试。传统的部署方式是通过解压复制或者调用部署脚本。这样的部署方式需要有着方式不统一、维护投入大的缺点。 在 linux 系统上,大多采用包管理的…...
【git】一文详解: git rebase到底有啥问题
引子 我反复看到这样的评论:“git rebase 像屎一样”。人们似乎对此有很强烈的感受,我真的很惊讶,因为我没有遇到太多使用 rebase 的问题,而且我一直在使用它。 使用 rebase 的成本有多大?在实际使用中它给你带来了什…...
高性能计算应用优化实践之WRF
WRF(Weather Research Forecast)模式是由美国国家大气研究中心(NCAR)、国家环境预报中心(NCEP)等机构自1997年起联合开发的新一代高分辨率中尺度天气研究预报模式,重点解决分辨率为1~…...
nsight-compute使用教程
一 安装 有的时候在linux上安装上了nsight-compute,可以生成报告,但是却因为缺少qt组件而无法打开,我选择的方法是在linux上生成报告,在window上的nsight compute的图形界面打开,需要注意的是,nsight compute图形界面的版本一定要更高,不然无法打开 二 使用 2.1 生成…...
【深度学习】03-神经网络01-4 神经网络的pytorch搭建和参数计算
# 计算模型参数,查看模型结构,我们要查看有多少参数,需要先安装包 pip install torchsummary import torch import torch.nn as nn from torchsummary import summary # 导入 summary 函数,用于计算模型参数和查看模型结构# 创建神经网络模型类 class Mo…...
我与Linux的爱恋:命令行参数|环境变量
🔥个人主页:guoguoqiang. 🔥专栏:Linux的学习 文章目录 一.命令行参数二.环境变量1.环境变量的基本概念2.查看环境变量的方法3.环境变量相关命令4.环境变量的组织方式以及获取环境变量的三种方法 环境变量具有全局属性 一…...
django drf 统一Response格式
场景 需要将响应体按照格式规范返回给前端。 例如: 响应体中包含以下字段: {"result": true,"data": {},"code": 200,"message": "ok","request_id": "20cadfe4-51cd-42f6-af81-0…...
SM2协同签名算法中随机数K的随机性对算法安全的影响
前面介绍过若持有私钥d的用户两次SM2签名过程中随机数k相同,在对手获得两次签名结果Sig1和Sig2的情况下,可破解私钥d。 具体见SM2签名算法中随机数K的随机性对算法安全的影响_sm2关闭随机数-CSDN博客 另关于SM2协同签名过程,具体见SM2协同签…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
