当前位置: 首页 > news >正文

读构建可扩展分布式系统:方法与实践16读后总结与感想兼导读

1. 基本信息

构建可扩展分布式系统:方法与实践

 [美]伊恩·戈顿(Ian Gorton)著

机械工业出版社,2024年5月出版

1.1. 读薄率

书籍总字数188千字,笔记总字数49688字。

读薄率49688÷188000≈26.4%

1.2. 读厚方向

  1. 设计模式:可复用面向对象软件的基础

  2. 程序员修炼之道:通向务实的最高境界(第2版)

  3. 微服务设计

  4. 设计模式的艺术

1.3. 笔记--章节对应关系

笔记章节字数发布日期
2024年
读构建可扩展分布式系统:方法与实践01可扩展系统简介第1章 可扩展系统简介25609月12日
读构建可扩展分布式系统:方法与实践02分布式系统架构简介第2章 分布式系统架构简介28839月13日
读构建可扩展分布式系统:方法与实践03分布式系统要点第3章 分布式系统要点43479月14日
读构建可扩展分布式系统:方法与实践04应用服务第5章 应用服务41279月15日
读构建可扩展分布式系统:方法与实践05分布式缓存第6章 分布式缓存24739月16日
读构建可扩展分布式系统:方法与实践06异步消息传递第7章 异步消息传递43229月17日
读构建可扩展分布式系统:方法与实践07无服务器处理系统第8章 无服务器处理系统27669月18日
读构建可扩展分布式系统:方法与实践08微服务第9章 微服务49689月19日
读构建可扩展分布式系统:方法与实践09可扩展数据库基础第10章 可扩展数据库基础48759月20日
读构建可扩展分布式系统:方法与实践10最终一致性第11章 最终一致性30819月21日
读构建可扩展分布式系统:方法与实践11强一致性第12章 强一致性36909月22日
读构建可扩展分布式系统:方法与实践12分布式数据库案例第13章 分布式数据库实践案例25289月23日
读构建可扩展分布式系统:方法与实践13可扩展的事件驱动处理第14章 可扩展的事件驱动处理43409月24日
读构建可扩展分布式系统:方法与实践14流处理系统第15章 流处理系统27289月25日
读构建可扩展分布式系统:方法与实践15可扩展系统的基本要素第16章 可扩展系统的基本要素
第4章 并发系统概述
39719月26日
$总计49688$

2. 亮点

2.1 详述了可扩展性这个概念

  • 从定义到原则,到特性

2.2 软件系统发展简史

  • 简述了1980年至今的软件系统发展简史

2.3 构建可扩展的分布式系统的组成要素

  • 从缓存、消息队列、无服务系统、数据库、微服务等方面进行了论述

3. 感想

3.1 可扩展性往往就是不断投入刀乐的代名词

  • 谷时低性能,峰时高性能

3.2 提前考虑总是有益的

  • 凡事预则立,不预则废

  • 提前想到,后期投入刀乐的代价可能会小点

3.3 核心业务系统为小系统,可扩展性像硬件扩展坞那样外挂多好啊

  • 这样专心实现核心业务功能

  • 其他共性的问题交给扩展坞这样的外挂去处理,该多好啊

    • 专业的人做专业的事情

相关文章:

读构建可扩展分布式系统:方法与实践16读后总结与感想兼导读

1. 基本信息 构建可扩展分布式系统:方法与实践 [美]伊恩戈顿(Ian Gorton)著 机械工业出版社,2024年5月出版 1.1. 读薄率 书籍总字数188千字,笔记总字数49688字。 读薄率49688188000≈26.4% 1.2. 读厚方向 设计模式:可复用面向对象软件的…...

Anaconda 安装

目录 - [简介](#简介) - [安装Anaconda](#安装anaconda) - [启动Anaconda Navigator](#启动anaconda-navigator) - [创建环境](#创建环境) - [管理包](#管理包) - [常用命令行操作](#常用命令行操作) - [Jupyter Notebook 快速入门](#jupyter-notebook-快速入门) - [结…...

优雅使用 MapStruct 进行类复制

前言 在项目中,常常会遇到从数据库读取数据后不能直接返回给前端展示的情况,因为还需要对字段进行加工,比如去除时间戳记录、隐藏敏感数据等。传统的处理方式是创建一个新类,然后编写大量的 get/set 方法进行赋值,若字…...

第19周JavaWeb编程实战-MyBatis实现OA系统 1-OA系统

办公OA系统项目开发 课程简介 本课程将通过慕课办公OA平台的开发,讲解实际项目开发中必须掌握的技能和设计技巧。课程分为三个主要阶段: 需求说明及环境准备: 基于RBAC的访问控制模块开发: 多级请假审批流程开发: …...

仿黑神话悟空跑动-脚下波纹特效(键盘wasd控制走动)

vue使用three.js实现仿黑神话悟空跑动-脚下波纹特效 玩家角色的正面始终朝向鼠标方向&#xff0c;且在按下 W 键时&#xff0c;玩家角色会朝着鼠标方向前进 空格建跳跃 <template><div ref"container" class"container" click"onClick"…...

`torch.utils.data`模块

在PyTorch中&#xff0c;torch.utils.data模块提供了许多有用的工具来处理和加载数据。以下是对您提到的DataLoader, Subset, BatchSampler, SubsetRandomSampler, 和 SequentialSampler的详细解释以及使用示例。 1. DataLoader DataLoader是PyTorch中用于加载数据的一个非常…...

深入理解 `strncat()` 函数:安全拼接字符串

目录&#xff1a; 前言一、 strncat() 函数的基本用法二、 示例代码三、 strncat() 与 strcat() 的区别四、 注意事项五、 实际应用场景总结 前言 在C语言中&#xff0c;字符串操作是编程中非常常见的需求。strncat() 函数是标准库中用于字符串拼接的一个重要函数&#xff0c;…...

OpenCV_自定义线性滤波(filter2D)应用详解

OpenCV filter2D将图像与内核进行卷积&#xff0c;将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时&#xff0c;该函数根据指定的边界模式插值异常像素值。 卷积核本质上是一个固定大小的系数数组&#xff0c;数组中的某个元素被作为锚点&#xff08;一般…...

设计模式之装饰模式(Decorator)

前言 这个模式带给我们有关组合跟继承非常多的思考 定义 “单一职责” 模式。动态&#xff08;组合&#xff09;的给一个对象增加一些额外的职责。就增加功能而言&#xff0c;Decorator模式比生成子类&#xff08;继承&#xff09;更为灵活&#xff08;消除重复代码 & 减少…...

大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…...

React入门准备

React是什么 React是一个用于构建用户界面的JavaScript框架&#xff0c;用于构建“可预期的”和“声明式的”Web用户界面&#xff0c;特别适合于构建那些数据会随时间改变的大型应用的用户界面。 它起源于Facebook的内部项目&#xff0c;因为对市场上所有JavaScript MVC框架都…...

robomimic基础教程(四)——开源数据集

robomimic开源了大量数据集及仿真环境&#xff0c;数据集标准格式为HDF5 目录 一、基础要求 二、使用步骤 1. 下载数据集 2. 后处理 3. 训练 4. 查看训练结果 三、HDF5数据集结构与可视化 1. 数据集结构 &#xff08;1&#xff09;根级别&#xff08;data 组 group&a…...

胤娲科技:AI界的超级充电宝——忆阻器如何让LLM告别电量焦虑

当AI遇上“记忆橡皮擦”&#xff0c;电量不再是问题&#xff01; 嘿&#xff0c;朋友们&#xff0c;你们是否曾经因为手机电量不足而焦虑得像个无头苍蝇&#xff1f;想象一下&#xff0c;如果这种“电量焦虑”也蔓延到了AI界&#xff0c; 特别是那些聪明绝顶但“耗电如喝水”的…...

前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)- qwen1.5-0.5B - 纯前端不调接口

书接上文&#xff0c;本文完了RAG的后半部分&#xff0c;在浏览器运行qwen1.5-0.5B实现了增强搜索全流程。但受限于浏览器和模型性能&#xff0c;仅适合于研究、离线和高隐私场景&#xff0c;但对前端小伙伴来说大模型也不是那么遥不可及了&#xff0c;附带全部代码&#xff0c…...

K-means聚类分析对比

K-means聚类分析&#xff0c;不同K值聚类对比&#xff0c;该内容是关于K-means聚类分析的&#xff0c;主要探讨了不同K值对聚类结果的影响。K-means聚类是一种常见的数据分析方法&#xff0c;用于将数据集划分为K个不同的类别。在这个过程中&#xff0c;选择合适的K值是非常关键…...

tar命令:压缩、解压的好工具

一、命令简介 用途&#xff1a; tar​ 命令用于创建归档文件&#xff08;tarball&#xff09;&#xff0c;以及从归档文件中提取文件。 标签&#xff1a; 文件管理&#xff0c;归档。 特点&#xff1a; 归档文件可以保留原始文件和目录的层次结构&#xff0c;通常使用 .tar ​…...

Mac电脑上最简单安装Python的方式

背景 最近换了一台新的 MacBook Air 电脑&#xff0c;所有的开发软件都没有了&#xff0c;需要重新配环境&#xff0c;而我现在最常用的开发程序就是Python。这篇文章记录一下我新Mac电脑安装Python的全过程&#xff0c;也给大家一些思路上的提醒。 以下是我新电脑的配置&…...

Linux基础命令cd详解

cd&#xff08;change directory&#xff09;命令是 Linux 中用于更改当前工作目录的基础命令。它没有很多复杂的参数&#xff0c;但它的使用非常频繁。以下是 cd 命令的详细说明及示例。 基本语法 cd [选项] [路径] 常用选项 -L : 使用逻辑路径&#xff08;默认选项&…...

【大模型对话 的界面搭建-Open WebUI】

Open WebUI 前身就是 Ollama WebUI&#xff0c;为 Ollama 提供一个可视化界面&#xff0c;可以完全离线运行&#xff0c;支持 Ollama 和兼容 OpenAI 的 API。 github网址 https://github.com/open-webui/open-webui安装 第一种 docker安装 如果ollama 安装在同一台服务器上&…...

如何在算家云搭建text-generation-webui(文本生成)

一、text-generation-webui 简介 text-generation-webui 是一个流行的用于文本生成的 Gradio Web UI。支持 transformers、GPTQ、AWQ、EXL2、llama.cpp (GGUF)、Llama 模型。 它的特点如下&#xff0c; 3 种界面模式&#xff1a;default (two columns), notebook, chat支持多…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

STM32标准库-ADC数模转换器

文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”&#xff1a;输入模块&#xff08;GPIO、温度、V_REFINT&#xff09;1.4.2 信号 “调度站”&#xff1a;多路开关1.4.3 信号 “加工厂”&#xff1a;ADC 转换器&#xff08;规则组 注入…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解

文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...