当前位置: 首页 > news >正文

读构建可扩展分布式系统:方法与实践16读后总结与感想兼导读

1. 基本信息

构建可扩展分布式系统:方法与实践

 [美]伊恩·戈顿(Ian Gorton)著

机械工业出版社,2024年5月出版

1.1. 读薄率

书籍总字数188千字,笔记总字数49688字。

读薄率49688÷188000≈26.4%

1.2. 读厚方向

  1. 设计模式:可复用面向对象软件的基础

  2. 程序员修炼之道:通向务实的最高境界(第2版)

  3. 微服务设计

  4. 设计模式的艺术

1.3. 笔记--章节对应关系

笔记章节字数发布日期
2024年
读构建可扩展分布式系统:方法与实践01可扩展系统简介第1章 可扩展系统简介25609月12日
读构建可扩展分布式系统:方法与实践02分布式系统架构简介第2章 分布式系统架构简介28839月13日
读构建可扩展分布式系统:方法与实践03分布式系统要点第3章 分布式系统要点43479月14日
读构建可扩展分布式系统:方法与实践04应用服务第5章 应用服务41279月15日
读构建可扩展分布式系统:方法与实践05分布式缓存第6章 分布式缓存24739月16日
读构建可扩展分布式系统:方法与实践06异步消息传递第7章 异步消息传递43229月17日
读构建可扩展分布式系统:方法与实践07无服务器处理系统第8章 无服务器处理系统27669月18日
读构建可扩展分布式系统:方法与实践08微服务第9章 微服务49689月19日
读构建可扩展分布式系统:方法与实践09可扩展数据库基础第10章 可扩展数据库基础48759月20日
读构建可扩展分布式系统:方法与实践10最终一致性第11章 最终一致性30819月21日
读构建可扩展分布式系统:方法与实践11强一致性第12章 强一致性36909月22日
读构建可扩展分布式系统:方法与实践12分布式数据库案例第13章 分布式数据库实践案例25289月23日
读构建可扩展分布式系统:方法与实践13可扩展的事件驱动处理第14章 可扩展的事件驱动处理43409月24日
读构建可扩展分布式系统:方法与实践14流处理系统第15章 流处理系统27289月25日
读构建可扩展分布式系统:方法与实践15可扩展系统的基本要素第16章 可扩展系统的基本要素
第4章 并发系统概述
39719月26日
$总计49688$

2. 亮点

2.1 详述了可扩展性这个概念

  • 从定义到原则,到特性

2.2 软件系统发展简史

  • 简述了1980年至今的软件系统发展简史

2.3 构建可扩展的分布式系统的组成要素

  • 从缓存、消息队列、无服务系统、数据库、微服务等方面进行了论述

3. 感想

3.1 可扩展性往往就是不断投入刀乐的代名词

  • 谷时低性能,峰时高性能

3.2 提前考虑总是有益的

  • 凡事预则立,不预则废

  • 提前想到,后期投入刀乐的代价可能会小点

3.3 核心业务系统为小系统,可扩展性像硬件扩展坞那样外挂多好啊

  • 这样专心实现核心业务功能

  • 其他共性的问题交给扩展坞这样的外挂去处理,该多好啊

    • 专业的人做专业的事情

相关文章:

读构建可扩展分布式系统:方法与实践16读后总结与感想兼导读

1. 基本信息 构建可扩展分布式系统:方法与实践 [美]伊恩戈顿(Ian Gorton)著 机械工业出版社,2024年5月出版 1.1. 读薄率 书籍总字数188千字,笔记总字数49688字。 读薄率49688188000≈26.4% 1.2. 读厚方向 设计模式:可复用面向对象软件的…...

Anaconda 安装

目录 - [简介](#简介) - [安装Anaconda](#安装anaconda) - [启动Anaconda Navigator](#启动anaconda-navigator) - [创建环境](#创建环境) - [管理包](#管理包) - [常用命令行操作](#常用命令行操作) - [Jupyter Notebook 快速入门](#jupyter-notebook-快速入门) - [结…...

优雅使用 MapStruct 进行类复制

前言 在项目中,常常会遇到从数据库读取数据后不能直接返回给前端展示的情况,因为还需要对字段进行加工,比如去除时间戳记录、隐藏敏感数据等。传统的处理方式是创建一个新类,然后编写大量的 get/set 方法进行赋值,若字…...

第19周JavaWeb编程实战-MyBatis实现OA系统 1-OA系统

办公OA系统项目开发 课程简介 本课程将通过慕课办公OA平台的开发,讲解实际项目开发中必须掌握的技能和设计技巧。课程分为三个主要阶段: 需求说明及环境准备: 基于RBAC的访问控制模块开发: 多级请假审批流程开发: …...

仿黑神话悟空跑动-脚下波纹特效(键盘wasd控制走动)

vue使用three.js实现仿黑神话悟空跑动-脚下波纹特效 玩家角色的正面始终朝向鼠标方向&#xff0c;且在按下 W 键时&#xff0c;玩家角色会朝着鼠标方向前进 空格建跳跃 <template><div ref"container" class"container" click"onClick"…...

`torch.utils.data`模块

在PyTorch中&#xff0c;torch.utils.data模块提供了许多有用的工具来处理和加载数据。以下是对您提到的DataLoader, Subset, BatchSampler, SubsetRandomSampler, 和 SequentialSampler的详细解释以及使用示例。 1. DataLoader DataLoader是PyTorch中用于加载数据的一个非常…...

深入理解 `strncat()` 函数:安全拼接字符串

目录&#xff1a; 前言一、 strncat() 函数的基本用法二、 示例代码三、 strncat() 与 strcat() 的区别四、 注意事项五、 实际应用场景总结 前言 在C语言中&#xff0c;字符串操作是编程中非常常见的需求。strncat() 函数是标准库中用于字符串拼接的一个重要函数&#xff0c;…...

OpenCV_自定义线性滤波(filter2D)应用详解

OpenCV filter2D将图像与内核进行卷积&#xff0c;将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时&#xff0c;该函数根据指定的边界模式插值异常像素值。 卷积核本质上是一个固定大小的系数数组&#xff0c;数组中的某个元素被作为锚点&#xff08;一般…...

设计模式之装饰模式(Decorator)

前言 这个模式带给我们有关组合跟继承非常多的思考 定义 “单一职责” 模式。动态&#xff08;组合&#xff09;的给一个对象增加一些额外的职责。就增加功能而言&#xff0c;Decorator模式比生成子类&#xff08;继承&#xff09;更为灵活&#xff08;消除重复代码 & 减少…...

大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…...

React入门准备

React是什么 React是一个用于构建用户界面的JavaScript框架&#xff0c;用于构建“可预期的”和“声明式的”Web用户界面&#xff0c;特别适合于构建那些数据会随时间改变的大型应用的用户界面。 它起源于Facebook的内部项目&#xff0c;因为对市场上所有JavaScript MVC框架都…...

robomimic基础教程(四)——开源数据集

robomimic开源了大量数据集及仿真环境&#xff0c;数据集标准格式为HDF5 目录 一、基础要求 二、使用步骤 1. 下载数据集 2. 后处理 3. 训练 4. 查看训练结果 三、HDF5数据集结构与可视化 1. 数据集结构 &#xff08;1&#xff09;根级别&#xff08;data 组 group&a…...

胤娲科技:AI界的超级充电宝——忆阻器如何让LLM告别电量焦虑

当AI遇上“记忆橡皮擦”&#xff0c;电量不再是问题&#xff01; 嘿&#xff0c;朋友们&#xff0c;你们是否曾经因为手机电量不足而焦虑得像个无头苍蝇&#xff1f;想象一下&#xff0c;如果这种“电量焦虑”也蔓延到了AI界&#xff0c; 特别是那些聪明绝顶但“耗电如喝水”的…...

前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)- qwen1.5-0.5B - 纯前端不调接口

书接上文&#xff0c;本文完了RAG的后半部分&#xff0c;在浏览器运行qwen1.5-0.5B实现了增强搜索全流程。但受限于浏览器和模型性能&#xff0c;仅适合于研究、离线和高隐私场景&#xff0c;但对前端小伙伴来说大模型也不是那么遥不可及了&#xff0c;附带全部代码&#xff0c…...

K-means聚类分析对比

K-means聚类分析&#xff0c;不同K值聚类对比&#xff0c;该内容是关于K-means聚类分析的&#xff0c;主要探讨了不同K值对聚类结果的影响。K-means聚类是一种常见的数据分析方法&#xff0c;用于将数据集划分为K个不同的类别。在这个过程中&#xff0c;选择合适的K值是非常关键…...

tar命令:压缩、解压的好工具

一、命令简介 用途&#xff1a; tar​ 命令用于创建归档文件&#xff08;tarball&#xff09;&#xff0c;以及从归档文件中提取文件。 标签&#xff1a; 文件管理&#xff0c;归档。 特点&#xff1a; 归档文件可以保留原始文件和目录的层次结构&#xff0c;通常使用 .tar ​…...

Mac电脑上最简单安装Python的方式

背景 最近换了一台新的 MacBook Air 电脑&#xff0c;所有的开发软件都没有了&#xff0c;需要重新配环境&#xff0c;而我现在最常用的开发程序就是Python。这篇文章记录一下我新Mac电脑安装Python的全过程&#xff0c;也给大家一些思路上的提醒。 以下是我新电脑的配置&…...

Linux基础命令cd详解

cd&#xff08;change directory&#xff09;命令是 Linux 中用于更改当前工作目录的基础命令。它没有很多复杂的参数&#xff0c;但它的使用非常频繁。以下是 cd 命令的详细说明及示例。 基本语法 cd [选项] [路径] 常用选项 -L : 使用逻辑路径&#xff08;默认选项&…...

【大模型对话 的界面搭建-Open WebUI】

Open WebUI 前身就是 Ollama WebUI&#xff0c;为 Ollama 提供一个可视化界面&#xff0c;可以完全离线运行&#xff0c;支持 Ollama 和兼容 OpenAI 的 API。 github网址 https://github.com/open-webui/open-webui安装 第一种 docker安装 如果ollama 安装在同一台服务器上&…...

如何在算家云搭建text-generation-webui(文本生成)

一、text-generation-webui 简介 text-generation-webui 是一个流行的用于文本生成的 Gradio Web UI。支持 transformers、GPTQ、AWQ、EXL2、llama.cpp (GGUF)、Llama 模型。 它的特点如下&#xff0c; 3 种界面模式&#xff1a;default (two columns), notebook, chat支持多…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...