Selenium与数据库结合:数据爬取与存储的技术实践
目录
一、Selenium与数据库结合的基础概念
1.1 Selenium简介
1.2 数据库简介
1.3 Selenium与数据库结合的优势
二、Selenium爬取数据的基本步骤
2.1 环境准备
2.2 编写爬虫代码
2.3 数据提取
2.4 异常处理
三、数据存储到数据库
3.1 数据库连接
3.2 数据存储
3.3 批量插入
3.4 数据存储格式
四、案例:爬取小说并存储到MongoDB
4.1 案例背景
4.2 爬取流程
4.3 示例代码
五、数据处理与分析
5.1 数据清洗
5.2 数据分析
5.3 数据可视化
六、总结与展望
在当今的数据驱动时代,信息的获取与分析变得尤为重要。网络爬虫作为一种自动抓取互联网信息的程序,在数据收集中扮演了关键角色。Selenium,作为一个强大的自动化测试工具,不仅支持多种浏览器,还能模拟真实用户的行为,如点击、输入文本等,因此在处理动态网页时尤为有效。结合数据库技术,Selenium爬取的数据可以被高效地存储、管理和进一步分析。本文将详细介绍如何使用Selenium爬取数据,并将其存储到数据库中,以及如何进行后续的数据处理和分析,旨在帮助初学者掌握这一技术流程。

一、Selenium与数据库结合的基础概念
1.1 Selenium简介
Selenium是一个用于Web应用程序测试的工具集,它支持多种浏览器(如Chrome、Firefox、Safari等),并能模拟用户在浏览器中的行为。Selenium的核心组件包括Selenium WebDriver,它允许开发者直接与浏览器交互,控制其行为。这使得Selenium在自动化测试和网络爬虫领域非常受欢迎。
1.2 数据库简介
数据库是存储和管理数据的核心系统,它支持数据的结构化存储、查询、更新和删除等操作。在Python中,常用的数据库包括MySQL、MongoDB、SQLite等。每种数据库都有其特点和应用场景,如MySQL适用于关系型数据存储,MongoDB则适用于非关系型数据存储。
1.3 Selenium与数据库结合的优势
- 动态网页支持:Selenium能模拟用户行为,包括执行JavaScript代码,因此能够处理动态加载的网页内容,这是传统爬虫工具(如requests或urllib)难以做到的。
- 数据存储与管理:结合数据库技术,Selenium爬取的数据可以被高效地存储和管理,便于后续的数据分析和处理。
- 灵活性与可扩展性:Selenium与数据库的结合可以根据实际需求进行调整和优化,适用于各种复杂的数据爬取和存储场景。
二、Selenium爬取数据的基本步骤
2.1 环境准备
- 安装Python:确保Python环境已安装,并配置好环境变量。
- 安装Selenium库:通过pip安装Selenium库。
- 安装WebDriver:下载对应浏览器的WebDriver(如ChromeDriver),并确保其路径已添加到系统环境变量中。
- 安装数据库:根据需要选择合适的数据库系统,并进行安装和配置。
2.2 编写爬虫代码
以下是一个使用Selenium爬取网页数据的简单示例:
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC # 初始化WebDriver
driver = webdriver.Chrome() # 打开目标网页
driver.get("https://example.com") # 等待页面加载完成
try: element = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "some_element_id")) )
except TimeoutException: print("页面加载超时") # 提取数据(此处以提取网页标题为例)
title = driver.title
print(title) # 关闭浏览器
driver.quit()
2.3 数据提取
根据网页的HTML结构,使用Selenium的find_element或find_elements方法提取所需数据。注意,对于动态加载的内容,可能需要使用WebDriverWait等待元素加载完成。
2.4 异常处理
在爬虫过程中,可能会遇到各种异常情况,如网络问题、元素未找到等。因此,需要编写相应的异常处理代码,以确保程序的健壮性。
三、数据存储到数据库
3.1 数据库连接
首先,需要建立与数据库的连接。以下是一个使用pymysql连接MySQL数据库的示例:
import pymysql # 连接数据库
conn = pymysql.connect( host='localhost', user='root', password='yourpassword', database='yourdatabase', charset='utf8mb4'
) # 创建游标对象
cursor = conn.cursor()
3.2 数据存储
提取到的数据可以通过SQL语句插入到数据库中。以下是一个插入数据的示例:
# 假设我们要插入的数据为:{'title': '网页标题', 'content': '网页内容'} # 构造SQL语句
sql = "INSERT INTO articles (title, content) VALUES (%s, %s)"
values = ('网页标题', '网页内容') # 执行SQL语句
try: cursor.execute(sql, values) conn.commit() # 提交事务
except Exception as e: print(f"数据插入失败:{e}") conn.rollback() # 回滚事务 # 关闭游标和连接
cursor.close()
conn.close()
3.3 批量插入
对于大量数据的插入,可以使用executemany方法批量执行SQL语句,以提高效率。
3.4 数据存储格式
除了直接存储为文本或字符串外,还可以根据需求将数据转换为JSON或CSV格式进行存储。JSON格式适合存储复杂的数据结构,而CSV格式则适合存储表格数据。
四、案例:爬取小说并存储到MongoDB
4.1 案例背景
假设我们需要从某个小说网站爬取小说的所有章节内容,并将其存储到MongoDB数据库中。该网站的小说章节是通过分页加载的,每页包含一章的内容。
4.2 爬取流程
初始化WebDriver:创建Chrome WebDriver实例。
打开目标网页:打开小说的第一页。
循环爬取:通过循环,依次打开每一页,提取章节标题和内容。
数据存储:将提取到的数据插入到MongoDB数据库中。
关闭浏览器:完成爬取后关闭浏览器。
4.3 示例代码
from selenium import webdriver
from selenium.webdriver.common.by import By
from pymongo import MongoClient # 初始化WebDriver
driver = webdriver.Chrome() # MongoDB连接
client = MongoClient('localhost', 27017)
db = client['novel_db']
collection = db['chapters'] # 初始化URL和章节总数
url_base = "https://example.com/novel/chapter/"
total_chapters = 100 # 假设总共有100章 for i in range(1, total_chapters + 1): # 构造URL url = f"{url_base}{i}" # 打开网页 driver.get(url) # 等待页面加载(此处省略等待代码) # 提取章节标题和内容(此处省略提取代码) title = "第{}章 标题".format(i) # 假设的标题 content = "这里是章节内容..." # 假设的内容 # 插入MongoDB collection.insert_one({"title": title, "content": content}) # 关闭浏览器
driver.quit()
注意:上述代码中的URL、章节总数、章节标题和内容均为示例,实际使用时需要根据目标网站的HTML结构进行相应的调整。
五、数据处理与分析
5.1 数据清洗
爬取到的数据可能包含噪声或冗余信息,需要进行清洗以提高数据质量。清洗过程可能包括去除HTML标签、处理特殊字符、去除空值等。
5.2 数据分析
清洗后的数据可以进行进一步的分析,如文本分析、情感分析、关联分析等。Python提供了丰富的数据分析库(如pandas、numpy、matplotlib、scikit-learn等),可以方便地进行数据分析工作。
5.3 数据可视化
数据分析的结果可以通过可视化技术呈现,以便更直观地理解数据。Python的matplotlib、seaborn、plotly等库提供了丰富的可视化工具。
六、总结与展望
Selenium与数据库的结合为数据爬取与存储提供了强大的技术支持。通过Selenium,我们可以高效地爬取互联网上的动态网页数据;通过数据库,我们可以将这些数据有序地存储起来,并进行进一步的处理和分析。然而,随着反爬虫技术的不断发展,如何在保证爬取效率的同时避免被目标网站封禁,是我们在未来需要面对和解决的问题。
此外,随着大数据和人工智能技术的不断发展,数据的质量和规模将成为决定分析结果的关键因素。因此,在未来的数据爬取与存储工作中,我们还需要不断优化爬虫策略、提高数据清洗和处理的效率、加强数据安全和隐私保护等方面的研究和实践。
希望本文能够帮助初学者掌握Selenium与数据库结合的基本技术和方法,为后续的数据分析工作打下坚实的基础。
相关文章:
Selenium与数据库结合:数据爬取与存储的技术实践
目录 一、Selenium与数据库结合的基础概念 1.1 Selenium简介 1.2 数据库简介 1.3 Selenium与数据库结合的优势 二、Selenium爬取数据的基本步骤 2.1 环境准备 2.2 编写爬虫代码 2.3 数据提取 2.4 异常处理 三、数据存储到数据库 3.1 数据库连接 3.2 数据存储 3.3 …...
在 Docker 中进入 Redis 容器后,可以通过以下方法查看 Redis 版本:
文章目录 1、info server2、redis-cli -v 1、info server [rootlocalhost ~]# docker exec -it spzx-redis redis-cli 127.0.0.1:6379> auth 123456 OK 127.0.0.1:6379> info server # Server redis_version:6.2.6 redis_git_sha1:00000000 redis_git_dirty:0 redis_bui…...
Windows 10 系统安装 FFmpeg 查看、转换、编辑音频文件
1、FFmpeg官网:FFmpeg 点击下载 可以选择下载full版本 下载之后解压到指定目录,在系统环境变量 Path 里面新增环境变量 打开CMD终端运行 ffmpeg -version 查看是否安装成功。 2、基本命令 查看音频基本信息 ffprobe 1.mp3 ##输出 [mp3 000002ab334405…...
反调试防护-API
IsDebuggerPresent() CheckRemoteDebuggerPresent() 其内部实际调用NtQueryInformationProcess() bool _stdcall ThreadCall() {while (true){BOOL pbDebuggerPresent FALSE;CheckRemoteDebuggerPresent(GetCurrentProcess(), &pbDebuggerPresent);if (pbDebuggerPres…...
【视频讲解】非参数重采样bootstrap逻辑回归Logistic应用及模型差异Python实现
全文链接:https://tecdat.cn/?p37759 分析师:Anting Li 本文将深入探讨逻辑回归在心脏病预测中的应用与优化。通过对加州大学欧文分校提供的心脏病数据集进行分析,我们将揭示逻辑回归模型的原理、实现过程以及其在实际应用中的优势和不足…...
Linux系统中命令wc
wc(word count)命令是Linux和Unix系统中用于计算字数的一个非常实用的工具。它可以统计文件的字节数、字数、行数等信息。默认情况下,wc命令会输出这三个统计值,但你也可以通过选项来指定只输出其中的某些值。 基本用法 wc [选项…...
redis集群部署
创建ConfigMap redis-cm.yaml apiVersion: v1 kind: ConfigMap metadata:name: redis-cluster data:update-node.sh: |#!/bin/shREDIS_NODES"/data/nodes.conf"sed -i -e "/myself/ s/[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}/${POD_IP}/&quo…...
VUE条件树查询
看如下图所示的功能,是不是可高级了?什么,你没看懂?拜托双击放大看! 是的,我最近消失了一段时间就是在研究这个玩意的实现,通过不懈努力与钻研并参考其他人员实现并加以改造,很好&am…...
vue框架学习 -- 日历控件 FullCalendar 使用总结
最近在项目中要实现日期排班的功能,正好要用到日历视图的控件,经过对比发现,vue 中 使用 FullCalendar 可以实现相关需求,下面对使用过程做一个总结。 一. 引入 FullCalendar 控件 package.json 中添加相关依赖 "dependen…...
[数据集][目标检测]猪数据集VOC-2856张
数据集格式:Pascal VOC格式(不包含分割的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):2856 标注数量(xml文件个数):2856 标注类别数:1 标注类别名称:["pig"] 每个类别标注的框数:…...
工业制造场景中的设备管理深度解析
在工业制造的广阔领域中,设备管理涵盖多个关键方面,对企业的高效生产和稳定运营起着举足轻重的作用。 一、设备运行管理 1.设备状态监测 实时监控设备的运行状态是确保生产顺利进行的重要环节。通过传感器和数据采集系统等先进技术,获取设备…...
OpenCV图像文件读写(3)统计多页图像文件中的页面数量函数imcount()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 返回给定文件中的图像数量。 imcount 函数将返回多页图像中的页面数量,对于单页图像则返回 1。 函数原型 size_t cv::imcount (cons…...
【数据治理-构建数据标准体系】
构建数据标准体系分为六大主要步骤,分别是: 1、规划数据标准 2、开发数据标准 3、发布数据标准 4、执行数据标准 5、数据标准遵从检查 6、维护数据标准 1、规划数据标准 (1)数据标准的规划首先是在公司业务架构和数据架构的范围…...
AI新方向:OpenAI o1是一个更擅长思考的模型系列:高级推理+逻辑严密+更广泛的知识,用于解决复杂的逻辑问题,慢思考
之前推出AI store感觉偏应用,也千篇一律,是AI的一个方向:广度。 现在推出o1 更严密的逻辑,也是AI的一个方向:深度。花更多时间,推理复杂的任务并解决比以前的科学、编码和数学模型更难的问题。确保AI的使用…...
Laravel部署后,CPU 使用率过高
我在部署 Laravel 应用程序时遇到严重问题。当访问量稍微大一点的时候,cpu马上就到100%了, 找了一大堆文档和说明,都是说明laravel处理并发的能力太弱,还不如原生的php。最后找到swoole解决问题。 1、php下载swoole插件࿰…...
Rust调用tree-sitter支持自定义语言解析
要使用 Rust 调用 tree-sitter 解析自定义语言,你需要遵循一系列步骤来定义语言的语法,生成解析器,并在 Rust 中使用这个解析器。下面是详细步骤: 1. 定义自定义语言的语法 首先,你需要创建一个 tree-sitter 语言定义…...
如何解决跨域请求中的 CORS 错误
聚沙成塔每天进步一点点 本文回顾 ⭐ 专栏简介如何解决跨域请求中的 CORS 错误1. 引言2. 什么是 CORS?2.1 同源策略示例: 2.2 CORS 请求的类型 3. CORS 错误的原因3.1 常见 CORS 错误示例 4. 解决 CORS 错误的常见方法4.1 在服务器端启用 CORS4.1.1 Node…...
计算机知识科普问答--20(96-100)
文章目录 96、为什么要进行内存管理?1. **多进程环境中的内存共享与隔离**举例:2. **提高内存利用率**举例:3. **虚拟内存支持**举例:4. **内存分配的灵活性与效率**举例:5. **内存保护**举例:6. **内存分段和分页的管理**7. **内存交换(Swapping)**举例:8. **提升系统…...
济南站活动回顾|IvorySQL中的Oracle XML函数使用示例及技术实现原理
近日,由中国开源软件推进联盟PG分会 & 齐鲁软件园联合发起的“PostgreSQL技术峰会济南站”在齐鲁开源社举办。瀚高股份IvorySQL作为合作伙伴受邀参加此次活动。 瀚高股份IvorySQL技术工程师 向逍 带来「IvorySQL中的Oracle XML函数兼容」的议题分享。在演讲中&a…...
【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术QueSearch
【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术Que2Search 目录 文章目录 【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术Que2Search目录0. 论文信息1. 研究背景:2. 技术背景和发展历史:3. 算法建模3.1 模型架构3.1.1 双塔与分类 …...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
