当前位置: 首页 > news >正文

HumanNeRF:Free-viewpoint Rendering of Moving People from Monocular Video 精读

1. 姿态估计和骨架变换模块

  • 人体姿态估计:HumanNeRF 通过已知的单目视频对视频中人物的姿态进行估计。常见的方法是通过人体姿态估计器(如 OpenPose 或 SMPL 模型)提取人物的骨架信息,获取 3D 关节的位置信息。这些关节信息可以帮助建模每一帧视频中人物的骨架姿态。

  • 骨架绑定和变换:通过这些 3D 关节信息,系统能够计算出骨架在不同帧中如何变化。HumanNeRF 通过骨架绑定(rigging)的方式,将骨架姿态与人体的点云或体积绑定在一起。这样,在每一帧中,人体表面的点会根据骨架的运动进行相应的变换。

2. 规范空间(Canonical Space)模块

  • 规范姿态建模:在 HumanNeRF 中,人物的几何形态被标准化为 规范姿态,例如 T-pose。规范姿态是一个无论人体如何运动和变形,都会映射到的标准几何形态。在训练过程中,NeRF 会学习如何将不同姿态下的采样点映射回这个规范姿态。

  • 从规范空间到动态姿态的映射:当系统估计出规范姿态后,HumanNeRF 会通过学习一个 运动场(Motion Field) 来将规范姿态中的人体点转换到目标姿态(视频中实际拍摄的姿态)。这个映射使得模型能够处理人物的姿态变换,并生成一致的几何形态。

3. 非刚性运动场(Non-Rigid Motion Field)模块

  • 处理人物的非刚性运动:HumanNeRF 还需要处理人物的非刚性运动,比如人体的肌肉、衣物、皮肤等随姿态变换时产生的局部变化。为了建模这些变化,HumanNeRF 通过 非刚性运动场(Non-Rigid Motion Field) 来估计不同姿态下的细微变化。
  • MLP 模型:为了计算出从规范姿态到目标姿态的非刚性运动偏移,HumanNeRF 使用了一个多层感知机(MLP)模型。这个 MLP 接收人物的骨架姿态信息以及位置嵌入(Positional Embedding),并输出人体各个部位的非刚性偏移,从而动态调整人物的表面形态。

4. NeRF 渲染模块

  • 视角转换与体积渲染:HumanNeRF 使用 NeRF 的方式对人物进行渲染。NeRF 的原理是将射线投射到三维空间中,利用体积渲染(Volume Rendering)计算射线经过的体素点的颜色和密度。HumanNeRF 将渲染的过程分为两步:
    1. 从规范姿态进行采样:首先在规范空间下进行采样,生成对应点的颜色和密度。
    2. 映射到动态姿态:再通过运动场和非刚性运动场将规范姿态下的采样点映射到目标姿态,并生成对应的动态人物渲染结果。
  • 自由视角渲染:通过这个过程,系统可以生成任何视角下的视频帧,甚至是原始摄像机没有拍摄到的视角。这使得 HumanNeRF 实现了 自由视角渲染 的目标。

5. 时序一致性(Temporal Consistency)模块

  • 时序一致性处理:为了确保渲染出的动态人物在时间上具有一致性(例如防止物体“抖动”或“跳动”),HumanNeRF 还专门处理了时序一致性问题。它通过在多个时间帧之间建立关联来保证每个时间步的渲染结果都能平滑过渡。

  • 帧间优化:HumanNeRF 通过帧间一致性优化,使得模型在进行自由视角渲染时,不仅要在单帧内生成高质量的结果,还要保证相邻帧之间的渲染具有连贯性。

6. 训练与优化模块

  • 监督学习:HumanNeRF 使用监督学习方法,通过大量的单目视频帧和对应的姿态标签进行训练。模型通过将不同姿态下的点映射到规范空间,再渲染回目标姿态,逐渐学习如何正确地对人物进行渲染。

  • 损失函数:HumanNeRF 的训练过程可能包含多种损失函数,通常包括:

    1. 颜色损失:衡量渲染出的颜色与真实视频中的颜色差异。
    2. 几何一致性损失:确保在不同视角下渲染的几何形态保持一致。
    3. 时序一致性损失:防止渲染出的动态视频在时间序列上不稳定。

7. 自由视角动态渲染(Free-viewpoint Dynamic Rendering)

HumanNeRF 的最终目标是生成自由视角的动态渲染效果,尤其是在单目视频的约束下。通过对规范姿态、骨架运动、非刚性运动的结合,HumanNeRF 可以在输入单目视频的基础上,渲染出从不同视角观察到的动态人物。

相关文章:

HumanNeRF:Free-viewpoint Rendering of Moving People from Monocular Video 精读

1. 姿态估计和骨架变换模块 人体姿态估计:HumanNeRF 通过已知的单目视频对视频中人物的姿态进行估计。常见的方法是通过人体姿态估计器(如 OpenPose 或 SMPL 模型)提取人物的骨架信息,获取 3D 关节的位置信息。这些关节信息可以帮…...

Springboot中基于注解实现公共字段自动填充

1.使用场景 当我们有大量的表需要管理公共字段,并且希望提高开发效率和确保数据一致性时,使用这种自动填充方式是很有必要的。它可以达到一下作用 统一管理数据库表中的公共字段:如创建时间、修改时间、创建人ID、修改人ID等,这些…...

Android 已经过时的方法用什么新方法替代?

过时修正举例 (Kotlin): getColor(): resources.getColor(R.color.white) //已过时// 修正后:ContextCompat.getColor(this, R.color.white) getDrawable(): resources.getDrawable(R.mipmap.test) //已过时//修正后:ContextCompat.getDrawable(this, R.mipmap.test) //…...

【RocketMQ】MQ与RocketMQ介绍

🎯 导读:本文介绍了消息队列(MQ)的基本概念及其在分布式系统中的作用,包括实现异步通信、削峰限流和应用解耦等方面的优势,并对ActiveMQ、RabbitMQ、RocketMQ及Kafka四种MQ产品进行了对比分析,涵…...

【笔记】自动驾驶预测与决策规划_Part4_时空联合规划

文章目录 0. 前言1. 时空联合规划的基本概念1.1 时空分离方法1.2 时空联合方法 2.基于搜索的时空联合规划 (Hybrid A* )2.1 基于Hybrid A* 的时空联合规划建模2.2 构建三维时空联合地图2.3 基于Hybrid A*的时空节点扩展2.4 Hybrid A* :时空节…...

Linux指令收集

文件和目录操作 ls: 列出目录内容。 -l 显示详细信息。-a 显示隐藏文件(以.开头的文件)。cd: 改变当前工作目录。 cd ~ 返回主目录。cd .. 上移一级目录。pwd: 显示当前工作目录。mkdir: 创建目录。 mkdir -p path/to/directory 创建多级目录。rmdir: 删…...

《C++并发编程实战》笔记(五)

五、内存模型和原子操作 5.1 C中的标准原子类型 原子操作是不可分割的操作&#xff0c;它或者完全做好&#xff0c;或者完全没做。 标准原子类型的定义在头文件<atomic>中&#xff0c;类模板std::atomic<T>接受各种类型的模板实参&#xff0c;从而创建该类型对应…...

在Python中实现多目标优化问题(5)

在Python中实现多目标优化问题 在Python中实现多目标优化&#xff0c;除了传统的进化算法&#xff08;如NSGA-II、MOEA/D&#xff09;和机器学习辅助的方法之外&#xff0c;还有一些新的方法和技术。以下是一些较新的或较少被提及的方法&#xff1a; 1. 基于梯度的多目标优化…...

【Linux:共享内存】

共享内存的概念&#xff1a; 操作系统通过页表将共享内存的起始虚拟地址映射到当前进程的地址空间中共享内存是由需要通信的双方进程之一来创建但该资源并不属于创建它的进程&#xff0c;而属于操作系统 共享内存可以在系统中存在多份&#xff0c;供不同个数&#xff0c;不同进…...

今年Java回暖了吗

今年回暖了吗 仅结合师兄和同学的情况 BG 大多双非本 少部分211本 985硕 去年十月一之前 基本转正都失败 十月一之前0 offer 只有很少的人拿到美团 今年十月一之前 有HC的基本都转正了&#xff08;美团、字节等&#xff09;&#xff0c;目前没有HC的说也有机会&#xff08;…...

a = Sw,其中a和w是向量,S是矩阵,求w等于什么?w可以写成关于a和S的什么样子的公式

给定公式&#xff1a; a S w a S w aSw 其中&#xff1a; a a a 是已知向量&#xff0c; S S S 是已知矩阵&#xff0c; w w w 是未知向量。 我们的目标是求解 w w w&#xff0c;即将 w w w 表示为 a a a 和 S S S 的函数。 情况 1&#xff1a;矩阵 S S S 可逆 如果矩…...

多线程事务管理:Spring Boot 实现全局事务回滚

多线程事务管理:Spring Boot 实现全局事务回滚 在日常开发中,我们常常会遇到需要在多线程环境下进行数据库操作的场景。这类操作的挑战在于如何保证多个线程中的数据库操作要么一起成功,要么一起失败,即 事务的原子性。尤其是在多个线程并发执行的情况下,确保事务的一致性…...

Vue3 中集成海康 H5 监控视频播放功能

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来Vuet篇专栏内容:Vue-集成海康 H5 监控视频播放功能 目录 一、引言 二、环境搭建 三、代码解析 子组件部分 1.…...

Linux: eBPF: libbpf-bootstrap-master 编译

文章目录 简介编译运行展示输出展示:简介 这个是使用libbpf的一个例子; 编译 如果是一个可以联网的机器,这个libbpf-bootstrap的编译就方便了,完全是自动化的下载依赖文件;如果没有,就只能自己准备这些个软件。 需要:libbpf-static; [root@RH8-LCP c]# makeLIB …...

1.1.4 计算机网络的分类

按分布范围分类&#xff1a; 广域网&#xff08;wan&#xff09; 城域网&#xff08;man&#xff09; 局域网&#xff08;lan&#xff09; 个域网&#xff08;pan&#xff09; 注意&#xff1a;如今局域网几乎采用“以太网技术实现”&#xff0c;因此“以太网”几乎成了“局域…...

周家庄智慧旅游小程序

项目概述 周家庄智慧旅游小程序将通过数字化手段提升游客的旅游体验&#xff0c;依托周家庄的自然与文化资源&#xff0c;打造智慧旅游新模式。该小程序将结合虚拟现实&#xff08;VR&#xff09;、增强现实&#xff08;AR&#xff09;和人工智能等技术&#xff0c;提供丰富的…...

【在Linux世界中追寻伟大的One Piece】命名管道

目录 1 -> 命名管道 1.1 -> 创建一个命名管道 1.2 -> 匿名管道与命名管道的区别 1.3 -> 命名管道的打开规则 1.4 -> 例子 1 -> 命名管道 管道应用的一个限制就是只能在具有共同祖先(具有亲缘关系)的进程间通信。如果我们想在不相关的进程之间交换数据&…...

如意控物联网项目-ML307R模组软件及硬件调试环境搭建

软件及硬件调试环境搭建 1、 软件环境搭建及编译 a) 打开官方SDK&#xff0c;内涵APP-DEMO&#xff0c;通过vscode打开程序&#xff0c; 软件程序编写及编译参考下边说明文档链接 OneMO线上服务平台 编译需预安装python3.7以上版本&#xff0c;安装完python后&#xff0c;打开…...

大模型分布式训练并行技术(九)-总结

近年来&#xff0c;随着Transformer、MOE架构的提出&#xff0c;使得深度学习模型轻松突破上万亿规模参数&#xff0c;传统的单机单卡模式已经无法满足超大模型进行训练的要求。因此&#xff0c;我们需要基于单机多卡、甚至是多机多卡进行分布式大模型的训练。 而利用AI集群&a…...

uniapp view设置当前view之外的点击事件

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...