力扣9.26
931. 下降路径最小和
给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过matrix 的下降路径 的 最小和 。
下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。
数据范围
n == matrix.length == matrix[i].length1 <= n <= 100-100 <= matrix[i][j] <= 100
分析
简单dp
代码
class Solution {
public:int res = 0x3f3f3f3f;int n;const static int N = 105;int dp[N][N];int minFallingPathSum(vector<vector<int>>& matrix) {n = matrix.size();for(int i = 1; i <= n; i ++ ) {for(int j = 1; j <= n; j ++ ) {if(j == 1) dp[i][j] = min(dp[i - 1][j], dp[i - 1][j + 1]) + matrix[i - 1][j - 1];else if(j == n) dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1]) + matrix[i - 1][j - 1];else {dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j + 1])) + matrix[i - 1][j - 1];}}}int res = 0x3f3f3f3f;for(int i = 1; i <= n; i ++ ) res = min(res, dp[n][i]);return res;}
};
516. 最长回文子序列
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
数据范围
1 <= s.length <= 1000s仅由小写英文字母组成
分析
令 d p [ i ] [ j ] dp[i][j] dp[i][j]表示下标j到i的最长回文子序列长度,状态转移如下
- 若 s [ i ] = = s [ j ] d p [ i ] [ j ] = m a x ( d p [ i ] [ j + 1 ] , m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j + 1 ] + 2 ) ) ,其中 d p [ i ] [ j + 1 ] 表示 j + 1 到 i 的最长子序列, d p [ i − 1 ] [ j + 1 ] + 2 指使用 s [ i ] 和 s [ j ] 作为回文子序列的首尾 若s[i]==s[j] \ dp[i][j]=max(dp[i][j+1],max(dp[i-1][j],dp[i-1][j+1]+2)),其中dp[i][j+1]表示j+1到i的最长子序列,dp[i-1][j+1]+2指使用s[i]和s[j]作为回文子序列的首尾 若s[i]==s[j] dp[i][j]=max(dp[i][j+1],max(dp[i−1][j],dp[i−1][j+1]+2)),其中dp[i][j+1]表示j+1到i的最长子序列,dp[i−1][j+1]+2指使用s[i]和s[j]作为回文子序列的首尾
- 若 s [ i ] ! = s [ j ] d p [ i ] [ j ] = m a x ( d p [ i ] [ j + 1 ] , d p [ i − 1 ] [ j ] ) ,此时无法使用 s [ i ] 和 s [ j ] 作为首尾 若s[i]!=s[j] \ dp[i][j]=max(dp[i][j+1],dp[i-1][j]),此时无法使用s[i]和s[j]作为首尾 若s[i]!=s[j] dp[i][j]=max(dp[i][j+1],dp[i−1][j]),此时无法使用s[i]和s[j]作为首尾
由于 d p [ i ] [ j + 1 ] dp[i][j+1] dp[i][j+1]需要使用上一次的数据,因此这里j需要倒着遍历
代码
class Solution {
public:const static int N = 1005;int dp[N][N];int longestPalindromeSubseq(string s) {int n = s.size();dp[0][0] = 1;for(int i = 0; i < n; i ++ ) dp[i + 1][i + 1] = 1;for(int i = 0; i < n; i ++ ) {for(int j = i - 1; j >= 0 ; j -- ) {dp[i + 1][j + 1] = max(dp[i + 1][j + 2], dp[i][j + 1]);if(s[i] == s[j]) {dp[i + 1][j + 1] = max(dp[i + 1][j + 1], dp[i][j + 2] + 2);} }}int res = 0;for(int i = 1; i <= n; i ++ ) res = max(res, dp[n][i]);return res;}
};
712. 两个字符串的最小ASCII删除和
给定两个字符串s1 和 s2,返回 使两个字符串相等所需删除字符的 ASCII 值的最小和 。
数据范围
0 <= s1.length, s2.length <= 1000s1和s2由小写英文字母组成
分析
令 d p [ i ] [ j ] dp[i][j] dp[i][j]表示 s 1 s1 s1的前 i i i个字符和 s 2 s2 s2的前 j j j个字符变相等所需要删除 a s c l l ascll ascll字符的最小值
状态转移如下:
- 若 s 1 [ i ] = = s 2 [ j ] d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] + a , m i n ( d p [ i ] [ j − 1 ] + b , d p [ i − 1 ] [ j − 1 ] ) ) ; 若s1[i]==s2[j]\ dp[i][j]=min(dp[i - 1][j] + a, min(dp[i][j - 1] + b, dp[i - 1][j - 1])); 若s1[i]==s2[j] dp[i][j]=min(dp[i−1][j]+a,min(dp[i][j−1]+b,dp[i−1][j−1]));
- 若 s 1 [ i ] ! = s 2 [ j ] d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] + a , m i n ( d p [ i ] [ j − 1 ] + b , d p [ i − 1 ] [ j − 1 ] + a + b ) ) 若s1[i]!=s2[j]\ dp[i][j] = min(dp[i - 1][j] + a, min(dp[i][j - 1] + b, dp[i - 1][j - 1] + a + b)) 若s1[i]!=s2[j] dp[i][j]=min(dp[i−1][j]+a,min(dp[i][j−1]+b,dp[i−1][j−1]+a+b))
其中 a a a是 s 1 [ i ] s1[i] s1[i]的ascll值,b是 s 2 [ j ] s2[j] s2[j]的ascll值
注意一下初始化, d p [ i ] [ 0 ] dp[i][0] dp[i][0]和 d p [ 0 ] [ j ] dp[0][j] dp[0][j]就是将对应的 s 1 s1 s1的前 i i i个全删除,s2的前 j j j个全删除
代码
class Solution {
public:const static int N = 1005;int dp[N][N];int minimumDeleteSum(string s1, string s2) {int n = s1.size(), m = s2.size();memset(dp, 0x3f, sizeof(dp));dp[0][0] = 0;for(int i = 0; i < n; i ++ ) dp[i + 1][0] = dp[i][0] + (int)s1[i];for(int j = 0; j < m; j ++ ) dp[0][j + 1] = dp[0][j] + (int)s2[j];for(int i = 1; i <= n; i ++ ) {for(int j = 1; j <= m; j ++ ) {int a = (int)s1[i - 1];int b = (int)s2[j - 1];if(s1[i - 1] == s2[j - 1]) dp[i][j] = min(dp[i - 1][j] + a, min(dp[i][j - 1] + b, dp[i - 1][j - 1]));else dp[i][j] = min(dp[i - 1][j] + a, min(dp[i][j - 1] + b, dp[i - 1][j - 1] + a + b));}}return dp[n][m];}
};
相关文章:
力扣9.26
931. 下降路径最小和 给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过matrix 的下降路径 的 最小和 。 下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即…...
HT8731 内置自适应H类升压和防破音功能的10W D类及AB类音频功率放大器
1、特点 防削顶失真功能(防破音,Anti-Clipping Function, ACF) 免滤波器数字调制,直接驱动扬声器 输出功率 10W(VBAT4.2V,RL3Ω,THDN10%, fiN 1kHz) 6W(VBAT3.3~4.2V,RL4Ω,THDN<1%,20-20kHz 全频段) 3W (VBAT3.3~4.2V,RL8Ω, THDN<1%, 20- 20kHz 全频段 VB…...
webpack使用
一、简介 概述 本次使用webpack4进行构建打包 二、webpack 安装webpack、webpack-cli npm install webpack4.2.0 webpack-cli4.2.0 -D 三、loader 加载器概述 raw-loader:加载文件原始内容(utf-8) file-loader:把文件输出…...
高通Android 12 音量API设置相关代码
// 获取当前音量大小public static int getCurrentVolume(Context context) {AudioManager audioManager (AudioManager) context.getSystemService(Context.AUDIO_SERVICE);return audioManager.getStreamVolume(AudioManager.STREAM_MUSIC); // 使用 STREAM_MUSIC 作为示例…...
Qt开发第一讲
一、Qt项目里面有什么? 对各个文件的解释: Empty.pro文件 QT core gui # 要引入的Qt模块,后面学习到一些内容的时候可能会修改这里 #这个文件相当于Linux里面的makefile文件。makefile其实是一个非常古老的技术了。 #qmake搭配.pr…...
详细指南:如何有效解决Windows系统中msvcp140.dll丢失的解决方法
如果你在使用Windows系统时遇到“msvcp140.dll丢失”的错误提示,通常是因为你的计算机上缺少或损坏了msvcp140.dll文件。msvcp140.dll是Microsoft Visual C Redistributable包的一部分,许多应用程序和游戏需要它来正常运行。以下是几种解决msvcp140.dll丢…...
【RabbitMQ】幂等性、顺序性
幂等性 概述 幂等性是数学和计算机科学中某些运算的性质,他们可以被多次应用,而不会改变初始应用的结果。RabbitMQ的幂等性则是指同一条消息,多次消费,对系统的影响是相同的。 一般消息中间件的消息传输保障分为三个层级&#…...
FFmpeg源码:avio_skip函数分析
AVIOContext结构体和其相关的函数分析: FFmpeg源码:avio_r8、avio_rl16、avio_rl24、avio_rl32、avio_rl64函数分析 FFmpeg源码:read_packet_wrapper、fill_buffer函数分析 FFmpeg源码:avio_read函数分析 FFmpeg源码ÿ…...
Llama 3.1 技术研究报告-6
6 推理 我们研究了两种主要技术,以使 Llama 3 405B 模型的推理⾼效:(1) 流⽔线并⾏和 (2) FP8 量化。我们已经公开发布了我们的 FP8 量化实现。 6.1 流⽔线并⾏ 当使⽤ BF16 数字表⽰模型参数时,Llama 3 405B 不适合在装有 8 个 Nvidia H1…...
更新日志-Python OS
这么久没更新全是因为这段时间的事情很多,只能一点一点的更新代码,不过好在,也是成功更新出来啦! 更新日志(2024/9/29) 代码全文更新,将所有的绝对路径替换为相对路径,这样在各位大…...
Chrome浏览器的C++内存管理技术揭秘
Chrome浏览器作为全球最流行的网络浏览器之一,其高效的内存管理技术功不可没。本文将深入探讨Chrome浏览器在C中的内存管理技术,并介绍如何通过调整网页加载时间、优化视频播放体验和解决谷歌浏览器占用CPU过高的问题来提升浏览器性能。 (本…...
Redis --- redis事务和分布式事务锁
redis事务基本实现 Redis 可以通过 MULTI,EXEC,DISCARD 和 WATCH 等命令来实现事务(transaction)功能。 > MULTI OK > SET USER "Guide哥" QUEUED > GET USER QUEUED > EXEC 1) OK 2) "Guide哥"使用 MULTI命令后可以输入…...
SQL,将多对多的关联记录按行输出
数据库的Primary表和Secondary表有相同的结构,其中W、H、D是主键。Primary表:NameWHDPrimary item 1100500300Primary item 2100600300Primary item 3200500300Primary item 4100500300Primary item 5100600300Primary item 6200500300 Secondary表&…...
【SQL】筛选字符串与正则表达式
目录 语法 需求 示例 分析 代码 语法 SELECT column1, column2, ... FROM table_name WHERE condition; WHERE 子句用于指定过滤条件,以限制从数据库表中检索的数据。当你执行一个查询时,WHERE 子句允许你筛选出满足特定条件的记录。如果记录满…...
【Redis入门到精通五】Java如何像使用MySQL一样使用Redis(jedis安装及使用)
目录 Jedis 1.jedis是什么 2.jedis的安装配置 3.jedis的基础命令操作展示 1.set和get操作: 2.exists和del操作: 3.keys和type操作: 4. expire和ttl: Jedis Java 操作 redis 的客⼾端有很多,其中最知名的是 jedi…...
【 微信机器人+ AI 搭建】
摘要: 各种大模型已经出来好久了,各类app也已经玩腻了,接下来,就在考虑,怎么让大模型,利益最大化。 本人没有显著的家世,没有富婆包养,只能自己抽点时间,研究下技术&…...
VGG16网络介绍及代码撰写详解(总结1)
可以从本人以前的文章中可以看出作者以前从事的是嵌入式控制方面相关的工作,是一个机器视觉小白,之所以开始入门机器视觉的学习只要是一个idea,想把机器视觉与控制相融合未来做一点小东西。废话不多说开始正题。 摘要:本文是介绍V…...
多个excel表数据比对操作
多个excel表数据比对操作 本文主要使用两种方法进行比对,分别使用了openpyxl第三方库和pandas第三方库进行数据比对 两种方法优缺点: openpyxy: 优点:主要是处理xlsx的文件,里面方法简单,易懂 缺点:当数据量大的时候,速度很慢,之前我一条一条数据拿出来比较,两百多条…...
golang学习笔记32——哪些是用golang实现的热门框架和工具
推荐学习文档 golang应用级os框架,欢迎stargolang应用级os框架使用案例,欢迎star案例:基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识,这里有免费的golang学习笔…...
ZYNQ:开发环境搭建
资料下载 http://47.111.11.73/docs/boards/fpga/zdyz_qimxing(V2).html Vivado软件是什么? Vivado软件是Xilinx(赛灵思)公司推出的一款集成设计环境(IDE),主要用于FPGA(现场可编程门阵列&am…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...
