数据结构——栈的基本操作
前言
介绍
🍃数据结构专区:数据结构
参考
该部分知识参考于《数据结构(C语言版 第2版)》55 ~ 59页
🌈每一个清晨,都是世界对你说的最温柔的早安:ૢ(≧▽≦)و✨
1、栈的基本概念
栈(Stack)是一种遵循后进先出(LIFO, Last In First Out)原则的有序集合。
- 数组实现:使用数组的一个连续空间来存储栈中的元素,通常使用一个指针(或索引)来指示栈顶的位置。数组实现的栈在添加和删除元素时,如果数组已满或为空,可能需要进行扩容或缩容操作,这可能会涉及到额外的性能开销。
- 链表实现:使用链表的头部(或尾部,取决于具体实现)作为栈顶,通过修改链表的头指针(或尾指针)来实现元素的添加和删除。链表实现的栈在添加和删除元素时,不需要进行扩容或缩容操作,因此通常具有更好的性能。
2、数组栈的实现
2.1 宏定义
#include<iostream>
using namespace std;
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status;
2.2 数组栈的结构体定义
#define MAXSIZE 100 //顺序表的存储范围
#define STACK_INCREMENT 2 //存储空间分配增量//这里假定SElemType是int类型
typedef int SElemType;typedef struct
{SElemType* base; //栈底指针SElemType* top; //栈顶指针int stacksize; //栈可用的最大容量
}SqStack;
2.3 初始化数组栈
//初始化栈
Status InitStack(SqStack& S)
{S.base = new SElemType[MAXSIZE];if (!S.base)exit(OVERFLOW);S.top = S.base; //top初始化为base,空栈S.stacksize = MAXSIZE; //stacksize的最大容量为MAXSIZEreturn OK;
}
2.4 销毁数组栈
//销毁栈
Status DestroyStack(SqStack& S)
{free(S.base);S.base = NULL;S.top = NULL; //规范指针S.stacksize = 0;return OK;
}
2.5 清空数组栈
//清除栈
Status CleanStack(SqStack& S)
{S.top = S.base; //让top指针指回栈底即可return OK;
}
2.6 判空
//判空
Status StackEmpty(SqStack S)
{if (S.top == S.base) //如果栈顶和栈底指向同一个位置则证明栈为NULLreturn OK;elsereturn ERROR;
}
2.7 获取栈内元素个数
//获取栈内元素数量
int StackLength(SqStack S)
{return S.top - S.base;
}
2.8 获取栈顶元素
//获取栈顶元素
SElemType GetTop(SqStack S)
{//判断栈是否为空if (!StackEmpty(S))//不为空即可获取元素{return *(--S.top);}else{return ERROR;}
}
2.9 入栈
//入栈
Status Push(SqStack& S, SElemType e)
{//插入元素为新的栈顶元素if (S.top - S.base == S.stacksize)//满栈{S.base = (SElemType*)realloc(S.base, (S.stacksize + STACK_INCREMENT) * sizeof(SElemType));//判断是否扩容成功if (!S.base)exit(OVERFLOW);//如果扩容失败,退出程序S.top = S.base + S.stacksize;}*(S.top)++ = e; //这里是先对S.top解引用后存入数据e,随后将top指针向后移动一位
}
2.10 出栈
//出栈
Status Pop(SqStack& S, SElemType &e)
{//删除栈顶元素,并返回其值if (!StackEmpty(S)) //栈不为空进行操作{e = *(--S.top);return OK;}elsereturn ERROR;
}
2.11 visit()函数
// 定义一个函数visit,用于打印元素
void visit(SElemType e)
{std::cout << e << " ";
}
2.12 遍历数组栈
// 定义一个函数用于遍历栈中的元素并对每个元素执行visit函数
void StackTraverse(SqStack S, void(*visit)(SElemType))
{SElemType* p = S.base;while (S.top > p) //p指向栈元素visit(*p++); //对该栈调用visit(),p指针上移一个存储单元printf("\n");
}
2.13 整体代码(含测试代码)
#include<iostream>
using namespace std;
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status;#define MAXSIZE 100 //顺序表的存储范围
#define STACK_INCREMENT 2 //存储空间分配增量//这里假定SElemType是int类型
typedef int SElemType;typedef struct
{SElemType* base; //栈底指针SElemType* top; //栈顶指针int stacksize; //栈可用的最大容量
}SqStack;//SqStack S; //声明该栈//初始化栈
Status InitStack(SqStack& S)
{S.base = new SElemType[MAXSIZE];if (!S.base)exit(OVERFLOW);S.top = S.base; //top初始化为base,空栈S.stacksize = MAXSIZE; //stacksize的最大容量为MAXSIZEreturn OK;
}//销毁栈
Status DestroyStack(SqStack& S)
{free(S.base);S.base = NULL;S.top = NULL; //规范指针S.stacksize = 0;return OK;
}//清除栈
Status CleanStack(SqStack& S)
{S.top = S.base; //让top指针指回栈底即可return OK;
}//判空
Status StackEmpty(SqStack S)
{if (S.top == S.base) //如果栈顶和栈底指向同一个位置则证明栈为NULLreturn OK;elsereturn ERROR;
}//获取栈内元素数量
int StackLength(SqStack S)
{return S.top - S.base;
}//获取栈顶元素
SElemType GetTop(SqStack S)
{//判断栈是否为空if (!StackEmpty(S))//不为空即可获取元素{return *(--S.top);}else{return ERROR;}
}//入栈
Status Push(SqStack& S, SElemType e)
{//插入元素为新的栈顶元素if (S.top - S.base == S.stacksize)//满栈{S.base = (SElemType*)realloc(S.base, (S.stacksize + STACK_INCREMENT) * sizeof(SElemType));//判断是否扩容成功if (!S.base)exit(OVERFLOW);//如果扩容失败,退出程序S.top = S.base + S.stacksize;}*(S.top)++ = e; //这里是先对S.top解引用后存入数据e,随后将top指针向后移动一位
}//出栈
Status Pop(SqStack& S, SElemType &e)
{//删除栈顶元素,并返回其值if (!StackEmpty(S)) //栈不为空进行操作{e = *(--S.top);return OK;}elsereturn ERROR;
}// 定义一个函数visit,用于打印元素
void visit(SElemType e)
{std::cout << e << " ";
}// 定义一个函数用于遍历栈中的元素并对每个元素执行visit函数
void StackTraverse(SqStack S, void(*visit)(SElemType))
{SElemType* p = S.base;while (S.top > p) //p指向栈元素visit(*p++); //对该栈调用visit(),p指针上移一个存储单元printf("\n");
}int main() {int j;SqStack s;SElemType e;InitStack(s);for (j = 1; j <= 12; j++)Push(s, j);printf("栈中元素依次为\n");StackTraverse(s, visit);Pop(s, e);printf("弹出的栈顶元素e = %d\n", e);printf("栈空否? %d (1:空 0:否)\n", StackEmpty(s));e = GetTop(s);printf("栈顶元素e = %d,栈的长度为%d\n", e, StackLength(s));CleanStack(s);printf("清空栈后,栈空否? %d (1:空 0:否)\n", StackEmpty(s));DestroyStack(s);printf("销毁栈后,s.top = %u,s.base = %u,s.stacksize = %d\n", s.top, s.base, s.stacksize);
}
3、链表栈的实现
3.1 宏定义
#include<iostream>
using namespace std;
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status;
3.2 链表栈的结构体定义
typedef int SElemType;
typedef struct StackNode
{SElemType data;struct StackNode* next;
}StackNode, *LinkStack;
3.3 初始化链表栈
//初始化
Status InitStack(LinkStack& S)
{//让栈顶指针指向NULL即可S = NULL;return OK;
}
3.4 清空栈
//清空栈
Status ClearStack(LinkStack& S)
{//创建一个临时指针,遍历该链表后依次释放各个节点StackNode* p;while (S){p = S;S = S->next;delete p;}return OK;
}
3.5 判空
//判空
Status StackEmpty(LinkStack S)
{return S == NULL;
}
3.6 销毁链表栈
//销毁
Status DestroyStack(LinkStack& S)
{ClearStack(S);S = NULL;return OK;
}
3.7 入栈
//入栈
Status Push(LinkStack& S, SElemType e)
{//在栈顶位置插入元素eStackNode* p = new StackNode;p->data = e;p->next = S; //将新结点插入栈顶S = p; //修改栈顶指针为preturn OK;
}
3.8 出栈
//出栈
Status Pop(LinkStack &S, SElemType& e)
{//删除栈顶元素,并返回该元素if (S == NULL)return ERROR;StackNode * p = S;e = p->data;S = S->next;delete p;return OK;
}
3.9 获取栈顶元素
//获取栈顶元素
SElemType GetTop(LinkStack S)
{//返回S的栈顶元素,并不改变栈顶指针的位置if (S != NULL){return S->data;}
}
3.10 遍历打印
// 遍历栈并打印
void StackTraverse(LinkStack S)
{StackNode* p = S;while (p) {printf("%d ", p->data);p = p->next;}printf("\n");
}
3.11 整体代码(含测试代码)
#include<iostream>
using namespace std;
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status;typedef int SElemType;
typedef struct StackNode
{SElemType data;struct StackNode* next;
}StackNode, *LinkStack;//初始化
Status InitStack(LinkStack& S)
{//让栈顶指针指向NULL即可S = NULL;return OK;
}//清空栈
Status ClearStack(LinkStack& S)
{//创建一个临时指针,遍历该链表后依次释放各个节点StackNode* p;while (S){p = S;S = S->next;delete p;}return OK;
}//判空
Status StackEmpty(LinkStack S)
{return S == NULL;
}//销毁
Status DestroyStack(LinkStack& S)
{ClearStack(S);S = NULL;return OK;
}//入栈
Status Push(LinkStack& S, SElemType e)
{//在栈顶位置插入元素eStackNode* p = new StackNode;p->data = e;p->next = S; //将新结点插入栈顶S = p; //修改栈顶指针为preturn OK;
}//出栈
Status Pop(LinkStack &S, SElemType& e)
{//删除栈顶元素,并返回该元素if (S == NULL)return ERROR;StackNode * p = S;e = p->data;S = S->next;delete p;return OK;
}//获取栈顶元素
SElemType GetTop(LinkStack S)
{//返回S的栈顶元素,并不改变栈顶指针的位置if (S != NULL){return S->data;}
}// 遍历栈并打印
void StackTraverse(LinkStack S)
{StackNode* p = S;while (p) {printf("%d ", p->data);p = p->next;}printf("\n");
}int main()
{LinkStack S;InitStack(S);int e;Push(S, 1);Push(S, 2);Push(S, 3);printf("现在栈内元素为(后进先出):");StackTraverse(S);printf("栈顶元素为:%d\n", GetTop(S));Pop(S, e);printf("现在栈内元素为(后进先出):");StackTraverse(S);printf("弹出一个元素后,栈顶元素为:%d\n", GetTop(S));ClearStack(S);if (StackEmpty(S)) {printf("清空栈后,栈为空\n");}else {printf("清空栈后,栈不为空,证明有问题\n");}DestroyStack(S);return 0;
}
结语
到此我们的两种栈的实现代码就完成了,我们可以发现,在实现栈的过程中远没有当初学习顺序表那么困难,那是因为栈其实就是一种特殊结构的顺序表,并且在前面的学习顺序表过程中,我故意将ElemType写为一种结构体类型,让我们在学习顺序表时写起来就有些困难,在前面学会之后看到这里就游刃有余了!
相关文章:

数据结构——栈的基本操作
前言 介绍 🍃数据结构专区:数据结构 参考 该部分知识参考于《数据结构(C语言版 第2版)》55 ~ 59页 🌈每一个清晨,都是世界对你说的最温柔的早安:ૢ(≧▽≦)و✨ 1、栈的基本概念 栈&#x…...

Chainlit集成LlamaIndex实现知识库高级检索(组合对象检索)
检索原理 对象组合索引的原理 是利用IndexNode索引节点,将两个不同类型的检索器作为节点对象,使用 SummaryIndex (它可以用来构建一个包含多个索引节点的索引结构。这种索引通常用于从多个不同的数据源或索引方法中汇总信息,并能…...

万界星空科技铜拉丝行业MES系统,实现智能化转型
一、铜拉丝行业生产管理的难点主要体现在以下几个方面: 1、标准严格:铜线产品对质量的要求极高,特别是在电气性能、导电性、耐腐蚀性等方面,任何微小的瑕疵都可能影响产品的使用效果和安全性。 2、过程监控:生产过程…...

ECCV 2024 现场:参会者付高价、跨万里,却无法入场?
ECCV(European Conference on Computer Vision,欧洲计算机视觉国际会议)是计算机视觉领域的重要国际会议之一,与CVPR和ICCV并称为计算机视觉的三大顶级会议。 ECCV2024是该系列会议的第18届会议,2024年9月29日至10月4…...

使用rsync+jenkins实现服务自动部署全流程
项目背景:城市政务云服务器没有上k8s,所有后端服务都是原始方式部署启动 (java -jar xxx.jar),那么有没有方式简化部署难度,实现自动部署?当然是有的,下面详细介绍(以Cen…...
python 实现decision tree决策树算法
decision tree决策树算法介绍 决策树算法(Decision Tree Algorithm)是一种基于输入特征对实例进行分类的树结构模型,主要用于分类和回归任务。其基本原理是根据训练数据的特征属性和类别标签之间的关系,生成一个能够对新样本进行…...

前端大模型入门:实战篇之Vue3+Antdv+transformers+本地模型实现增强搜索
本文将之前的文章,实现一个场景的实战应用,包含代码等内容。利用纯前端实现增强的列表搜索,抛弃字符串匹配,目标是使用番茄关键字可以搜索到西红柿 1 准备工作 1.1 了解llm和web开发 web端的ai开发参考 前端大模型入门ÿ…...

《向量数据库指南》——Fivetran 的 Partner SDK:构建自定义连接器和目标
哈哈,说到 Fivetran 的 Partner SDK,这可真是个好东西啊!作为向量数据库领域的“老司机”,我今天就来给大家详细讲讲这个 SDK 的厉害之处,以及如何用它来构建自定义连接器和目标,实现与 Fivetran 自动化数据移动平台的无缝集成。 一、Fivetran Partner SDK:开启自定义连…...

微信小程序的 button 标签的边框如何去除?
目录 问题描述: 问题原因: 解决办法: 方案一 方案二 问题描述: 实际开发中会发现这个 button 自带有样式,当背景颜色设置为白色的时候还有一个黑色的边框,刚开始那个边框怎么都去不掉 无法去除的边框…...

20240926 关于Goland处理wsl-GOROOT原理猜测
GOROOT的原理 go sdk与java jdk类似,是go的编译工具链的集合。 在windows上,我们通过在系统环境变量中添加GOROOT并设置为go sdk地址,使得命令行可以访问到go sdk并执行go test、build等命令,这样设置的变量是全局生效的&#x…...

Anki 学习日记 - 卡片模版 - 单选ABCD(纯操作)
摘要:在不懂前端语言的情况下自定义卡片模版,卡片模版的字段 安装(官网):Anki - powerful, intelligent flashcards (ankiweb.net) 一、在哪能修改卡片模版 管理笔记模板 - > 添加 -> 问答题 -> 设置名称 二…...
钉钉x昇腾:用AI一体机撬动企业数字资产智能化
“走红”近两年后,大模型正在加速走进千行万业。 由于大模型的主要模态是文字和图片,恰好是数字化办公最基础的内容要素,办公于是成了离AI最近的场景。 公文写作、表格生成、提炼大纲、文本翻译、代码润色、数据统计、智能问答……越来越多…...

【C/C++】 秋招常考面试题最全总结(让你有一种相见恨晚的感觉)
目录 1.C程序编译链接过程 2.浅拷贝和move有区别吗 3.深拷贝和浅拷贝的区别 4.空类的大小 5.类的继承有几种方式,区别是什么? 六、extern 关键字的作用 七、static关键字的作用 八、指针和引用的区别 九、C内存分配方式 十、结构体对齐…...

CSS面试真题 part1
CSS面试真题 part1 1、说说你对盒子模型的理解2、谈谈你对BFC的理解3、什么是响应式设计?响应式设计的基本原理是什么?如何做?4、元素水平垂直居中的方法有哪些?如果元素不定宽高呢?5、如何实现两栏布局,右…...

针对考研的C语言学习(定制化快速掌握重点5)
顺序表 特点: 写代码主要就是增删改查!!! 写代码的边界性非常重要以及考研插入和删除的位置都是从1开始,而数组下标是从0开始 【注】下标和位置的关系 线性表最重要的是插入和删除会涉及边界问题以及判断是否合法 …...

构建高效房屋租赁系统:Spring Boot应用
1 绪论 1.1 研究背景 中国的科技的不断进步,计算机发展也慢慢的越来越成熟,人们对计算机也是越来越更加的依赖,科研、教育慢慢用于计算机进行管理。从第一台计算机的产生,到现在计算机已经发展到我们无法想象。给我们的生活改变很…...
学习单片机编程和硬件设计步骤
学习单片机编程和硬件设计可以分为几个步骤: 理解基本概念:首先需要了解单片机的基本概念、硬件结构和工作原理 。 选择开发平台:选择一个合适的单片机系列作为起点,如Arduino、ESP8266/ESP32或STM32系列 。 准备工具和环境&…...

.net Framework 4.6 WebAPI 使用Hangfire
C# 使用 Hangfire 第一章 .net Framework 4.6 WebAPI 使用Hangfire 文章目录 C# 使用 Hangfire前言一、hangfire是什么?二、hangfire的特点三、.net Framework 中hangfire的使用方法第一步:创建WebAPI控制器第二步:添加nuget包第三步 创建startup类新建项目startup类Startu…...

两个向量所在平面的法线,外积,叉积,行列式
偶尔在一个数学题里面看到求两向量所在平面的法线,常规方法可以通过法线与两向量垂直这一特点,列两个方程求解;另外一种方法可以通过求解两个向量的叉积,用矩阵行列式 (determinant) 的方式,之前还没见过,在…...

C++之 友元重载 以及最常用的几种友元函数
在之前的友元中就曾经讲过,我们为了去访问修改私有成员中的数据时,只能通过公有的办法去进行访问操作,非常的局限。所以C引用了友元函数,只要加上friend关键字,C的这个类,会自动把这个函数的权限拉到类内&a…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...