前端大模型入门:实战篇之Vue3+Antdv+transformers+本地模型实现增强搜索
本文将之前的文章,实现一个场景的实战应用,包含代码等内容。利用纯前端实现增强的列表搜索,抛弃字符串匹配,目标是使用番茄关键字可以搜索到西红柿
1 准备工作
1.1 了解llm和web开发
web端的ai开发参考 前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)前端大模型入门:使用Transformers.js实现纯网页版RAG(一)
前端框架使用的vue3+antdv,最好是懂相关代码,读懂即可。
1.2 开发环境和工具
- node20+
- vite
1.3 工程准备
// init.sh
// 创建vite vue-ts项目
yarn create vite test-ra-list --template vue-ts
// 进入工程目录
cd test-ra-list
// 安装依赖
yarn add ant-design-vue @xenova/transformers
1.4 本地模型目录准备
在public下面创建一个models目录,然后创建各个模型的子目录,以便后续将模型文件放入其中

1.5 下载模型文件
在hf-mirror找到想用模型,本文用到的在Xenova/bge-base-zh-v1.5 at main (hf-mirror.com),点击各个文件的下载图标,然后存储在对应目录下

下载模型文件,默认是quantized,除非你配置加载高精模型,也可以三个都下载,记得在1.4模型名的目录下新建一个onnx目录

最后public目录如下图所示

1.6 创建模拟数据
在public目录下创建一个data.json
[{"name":"PC1","id":"5F62AD98-9BAF-0B46-A506-D8EF3749D325"},{"name":"PC2","id":"58CE02BF-6F95-3F4C-9BF6-450E355BBD94"},{"name":"西红柿","id":"8FF8BC68-6BF3-0A4C-AD87-668C1CED3234"},{"name":"aaa11","id":"E6B61EFC-9730-4945-84C8-0C1FCF068AB6"},{"name":"地瓜-0","id":"3B26D363-6720-B241-AB1A-AE7C3BB1A989"},{"name":"地瓜-1","id":"A79DE23B-6A53-354A-90EA-3BAF90E43629"},{"name":"西红柿-10","id":"E3C781BF-F6ED-364E-923C-B9CA3C38BEA1"},{"name":"洋芋-100","id":"81E42720-3C18-9C4F-A302-D86C6AF51989"},{"name":"西红柿-101","id":"A98E902D-3ECB-A748-A3E6-2F4C2D36FD55"},{"name":"洋芋-102","id":"6B02AC77-55D4-7C40-98A3-383D52D72929"},{"name":"番茄-103","id":"D6E45494-BD47-5848-8492-287437155A3D"},{"name":"马铃薯-104","id":"7C4CB80B-6C0D-EC4A-A5BD-52E65D8EC2FF"},{"name":"土豆-104","id":"1C3829C0-8356-024E-AF90-9BC456A78E29"},{"name":"马铃薯-105","id":"5560C41C-46B2-BC44-9141-92E83B62D5C8"},{"name":"地瓜-106","id":"20598CEC-5E31-3F49-A578-A6F026018CC0"},{"name":"红薯-107","id":"E1061811-0886-0840-B387-A1321DA5212D"},{"name":"马铃薯-108","id":"D302EF74-0402-1F43-A4FD-FBF2CE852B5E"},{"name":"红薯-109","id":"608D7A1C-C265-9A4B-99D6-A08EBBDD08EF"},{"name":"番茄-11","id":"A19882CE-2B37-D64C-95E2-A8BC769D9A06"},{"name":"洋芋-110","id":"6D80D92B-540B-2A4D-AF2F-A15C8B04EB3F"},{"name":"番茄-111","id":"6F229077-AF25-D241-BEB4-0E53852EAF61"},{"name":"马铃薯-12","id":"A108EDCD-42D0-0B4E-9691-62FB8572ECF8"},{"name":"地瓜-13","id":"FB31B7D1-4CD3-F44C-9ED4-C659EDB58B25"}]
2 实现方法
首先分析和分解任务:1 列表呈现数据;2 高级搜索功能
2.1 数据加载和列表数据展示
这部分使用antdv的table可以很快速的展示数据,数据加载就使用fetch即可
type RawInfo = {name: string;id: string;
};
const loading = ref(false);
const items = ref<RawInfo[]>([]);
onMounted(() => {fetch("data.json").then((res) => res.json()).then((list) => (items.value = list));
});
const columns = [{title: "序号",dataIndex: "index",key: "index",customRender: (e: { index: number }) => {return h("span", {}, e.index + 1);},width: 84,},{title: "名称",dataIndex: "name",key: "name",}
] as ColumnsType<any>;
<Table :loading="loading" :dataSource="items" :columns="columns" />
2.2 搜索数据显示
为了动态显示搜索结果和原始结果,使用一个searchKey来切换显示的数据源。
const searchKey = ref("");
const showItems = computed(() => {return searchKey.value ? result.value : items.value;
});
const search = async (e: string) => {searchKey.value = e || "";if (!e) {return;}// 待完成搜索
};
<InputSearch placeholder="请输入搜索内容" @search="search" />
<Table :loading="loading" :dataSource="showItems" :columns="columns" />
2.3 模型参数准备
- 模型加载路径即为之前创建的public下的/models目录
- topK表示结果最多显示10个
- 使用minScore指定最低的相似度
import { cos_sim, env, pipeline } from "@xenova/transformers";
env.remoteHost = "/models/";
const topK = 10;
const minScore = 0.6;
const pipe = pipeline("feature-extraction", "bge-base-zh-v1.5", {progress_callback: (d: any) => {console.log(d);},
});
2.4 向量数组构建
深度搜索的核心就是高位空间的相似度(距离)匹配,所以需要将数据全部进行Emebdding
const buildVector = async () => {if (!items.value.length) return;const list = items.value;loading.value = true;vectors.length = list.length;await nextTick();const embedding = await pipe;const questions = list.map((item) => item.name);const output = (await embedding(questions, {pooling: "mean",normalize: true,})) as any;console.log(output);questions.forEach((q, i) => {vectors[i] = output[i];});loading.value = false;
};
2.5 相似度计算
将关键词/字进行向量化,然后依次计算相似度,而不是使用子字符串/包含关系的匹配。
const embedding = await pipe;const [vector] = await embedding([e], {pooling: "mean",normalize: true,});if (!vectors.length) {await buildVector();}const scores = vectors.map((q, i) => {return {score: cos_sim(vector.data, vectors[i].data),index: i,};});
2.6 结果筛选
最后,根据匹配度排序,过滤掉相似度过低的,再取相似度最高的topK项
scores.sort((a, b) => b.score - a.score);console.log(scores);result.value = scores.filter((e) => e.score > minScore).slice(0, topK).map((s) => items.value[s.index]);console.log(`搜索到${result.value.length}条记录:topK=${topK} minScore=${minScore}`);
3 实际效果
3.1 番茄 - 可搜索到西红柿

3.2 红薯-可搜索到地瓜

4 待改进点
4.1 模型精度
目前使用的是最小的模型,以便于都能体验,效果会有一点差,但整体结果还算理想
4.2 最低相似度和topK控制
这两个参数对结果的影响也不小,实际上我想去掉相似度过滤,而是直接选出topK可能好一点
4.3 嵌入改进 - 非阻塞
目前在初次计算向量组(列表元素向量)是比较耗资源的,会造成页面卡顿,这部分可考虑在worker或者做成单条异步运算,而不是一次性计算出所有条目的嵌入向量
项目开源地址,欢迎评论、点赞收藏、fork:vue3-antdv-transformer-advc-search-demo:使用vue3+Andtv+Transformer构建的一个增强表格搜索示例,使用ML取代字符串匹配搜索 - GitCode
https://gitcode.com/m0_38015699/vue3-antdv-transformer-advc-search-demo/overview
相关文章:
前端大模型入门:实战篇之Vue3+Antdv+transformers+本地模型实现增强搜索
本文将之前的文章,实现一个场景的实战应用,包含代码等内容。利用纯前端实现增强的列表搜索,抛弃字符串匹配,目标是使用番茄关键字可以搜索到西红柿 1 准备工作 1.1 了解llm和web开发 web端的ai开发参考 前端大模型入门ÿ…...
《向量数据库指南》——Fivetran 的 Partner SDK:构建自定义连接器和目标
哈哈,说到 Fivetran 的 Partner SDK,这可真是个好东西啊!作为向量数据库领域的“老司机”,我今天就来给大家详细讲讲这个 SDK 的厉害之处,以及如何用它来构建自定义连接器和目标,实现与 Fivetran 自动化数据移动平台的无缝集成。 一、Fivetran Partner SDK:开启自定义连…...
微信小程序的 button 标签的边框如何去除?
目录 问题描述: 问题原因: 解决办法: 方案一 方案二 问题描述: 实际开发中会发现这个 button 自带有样式,当背景颜色设置为白色的时候还有一个黑色的边框,刚开始那个边框怎么都去不掉 无法去除的边框…...
20240926 关于Goland处理wsl-GOROOT原理猜测
GOROOT的原理 go sdk与java jdk类似,是go的编译工具链的集合。 在windows上,我们通过在系统环境变量中添加GOROOT并设置为go sdk地址,使得命令行可以访问到go sdk并执行go test、build等命令,这样设置的变量是全局生效的&#x…...
Anki 学习日记 - 卡片模版 - 单选ABCD(纯操作)
摘要:在不懂前端语言的情况下自定义卡片模版,卡片模版的字段 安装(官网):Anki - powerful, intelligent flashcards (ankiweb.net) 一、在哪能修改卡片模版 管理笔记模板 - > 添加 -> 问答题 -> 设置名称 二…...
钉钉x昇腾:用AI一体机撬动企业数字资产智能化
“走红”近两年后,大模型正在加速走进千行万业。 由于大模型的主要模态是文字和图片,恰好是数字化办公最基础的内容要素,办公于是成了离AI最近的场景。 公文写作、表格生成、提炼大纲、文本翻译、代码润色、数据统计、智能问答……越来越多…...
【C/C++】 秋招常考面试题最全总结(让你有一种相见恨晚的感觉)
目录 1.C程序编译链接过程 2.浅拷贝和move有区别吗 3.深拷贝和浅拷贝的区别 4.空类的大小 5.类的继承有几种方式,区别是什么? 六、extern 关键字的作用 七、static关键字的作用 八、指针和引用的区别 九、C内存分配方式 十、结构体对齐…...
CSS面试真题 part1
CSS面试真题 part1 1、说说你对盒子模型的理解2、谈谈你对BFC的理解3、什么是响应式设计?响应式设计的基本原理是什么?如何做?4、元素水平垂直居中的方法有哪些?如果元素不定宽高呢?5、如何实现两栏布局,右…...
针对考研的C语言学习(定制化快速掌握重点5)
顺序表 特点: 写代码主要就是增删改查!!! 写代码的边界性非常重要以及考研插入和删除的位置都是从1开始,而数组下标是从0开始 【注】下标和位置的关系 线性表最重要的是插入和删除会涉及边界问题以及判断是否合法 …...
构建高效房屋租赁系统:Spring Boot应用
1 绪论 1.1 研究背景 中国的科技的不断进步,计算机发展也慢慢的越来越成熟,人们对计算机也是越来越更加的依赖,科研、教育慢慢用于计算机进行管理。从第一台计算机的产生,到现在计算机已经发展到我们无法想象。给我们的生活改变很…...
学习单片机编程和硬件设计步骤
学习单片机编程和硬件设计可以分为几个步骤: 理解基本概念:首先需要了解单片机的基本概念、硬件结构和工作原理 。 选择开发平台:选择一个合适的单片机系列作为起点,如Arduino、ESP8266/ESP32或STM32系列 。 准备工具和环境&…...
.net Framework 4.6 WebAPI 使用Hangfire
C# 使用 Hangfire 第一章 .net Framework 4.6 WebAPI 使用Hangfire 文章目录 C# 使用 Hangfire前言一、hangfire是什么?二、hangfire的特点三、.net Framework 中hangfire的使用方法第一步:创建WebAPI控制器第二步:添加nuget包第三步 创建startup类新建项目startup类Startu…...
两个向量所在平面的法线,外积,叉积,行列式
偶尔在一个数学题里面看到求两向量所在平面的法线,常规方法可以通过法线与两向量垂直这一特点,列两个方程求解;另外一种方法可以通过求解两个向量的叉积,用矩阵行列式 (determinant) 的方式,之前还没见过,在…...
C++之 友元重载 以及最常用的几种友元函数
在之前的友元中就曾经讲过,我们为了去访问修改私有成员中的数据时,只能通过公有的办法去进行访问操作,非常的局限。所以C引用了友元函数,只要加上friend关键字,C的这个类,会自动把这个函数的权限拉到类内&a…...
动态规划(3)——dp多状态问题Ⅰ
题一.按摩师(LeetCode) 题目描述 一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集…...
在Mac电脑上安装adb环境
当你在命令行输入 adb version 或adb devices, 报错:zsh: command not found: adb ,那么说明你的 Mac 上没有安装 ADB(Android Debug Bridge),或者它没有添加到你的路径中。你可以按照以下步骤安装和配置 ADBÿ…...
分糖果C++
题目: 样例解释: 样例1解释 拿 k20 块糖放入篮子里。 篮子里现在糖果数 20≥n7,因此所有小朋友获得一块糖; 篮子里现在糖果数变成 13≥n7,因此所有小朋友获得一块糖; 篮子里现在糖果数变成 6<n7…...
Spring中如何为静态变量注入值
在 Spring 中,如果使用 Value 注解注入值,不能将其应用于 static 字段。Spring 只能为实例变量注入值,不能直接对静态变量进行注入。 使用 PostConstruct 初始化: 如果确实需要在静态上下文中使用该值,可以使用 Post…...
HTML5实现唐朝服饰网站模板源码
文章目录 1.设计来源1.1 网站首页-界面效果1.2 唐装演变-界面效果1.3 唐装配色-界面效果1.4 唐装花纹-界面效果1.5 唐装文化-界面效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载万套模板,程序开发,在线开发,在线沟通 作者:xcL…...
ESXI识别USB设备
步骤: 插入usb设备到服务器。关闭虚拟机,添加USB控制器,根据U盘选择usb 3.0控制器,再添加usb设备如果usb设备灰色,进入主机打开SSH。使用xshell进行连接,运行以下命令: ESXI识别USB设备 - 插入…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
